Hollis, J., R. Mattes, 2007. Effect of chronic consumption of almonds on body weight in healthy humans. Brit. J. Nutr. 98:651-656.
Small changes of diet may reduce CVD risk. One example is the inclusion of nuts, which are rich in fiber, unsaturated fatty acids and phytonutrients. However, their fat content and energy density raise concerns that chronic consumption will promote weight gain. Randomized intervention studies are required to evaluate whether this concern is well founded. This study’s aim was to determine if the inclusion of a 1440 kJ serving of almonds in the daily diet results in positive energy balance, and body composition change. During a 23-week cross-over design study, participants were required to consume almonds for 10 weeks and were provided no advice on how to include them in their diet. For another 10 weeks (order counter-balanced), participants followed their customary diet and there was a 3-week washout between. A study group of twenty women was used. Potential mechanisms of energy dissipation were measured. Ten weeks of daily almond consumption did not cause a change in body weight. This was predominantly due to compensation for the energy contained in the almonds through reduced food intake from other sources. Moreover, inefficiency in the absorption of energy from almonds was documented (P<0.05). No changes in resting metabolic rate, thermic effect of food or total energy expenditure were noted. A daily 1440 kJ serving of almonds, sufficient to provide beneficial effects on cardiovascular risk factors, may be included in the diet with limited risk of weight gain. Whether this can be generalized to other high-fat energy dense foods warrants evaluation.
Harrison, K., L.M. Were, 2007. Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chem. 102:932-937.
Almond (Prunus amygdalus) skins are agricultural by-products that are a source of phenolic compounds. Phenolic compounds from gamma-irradiated almond skins were extracted with 40% ethanol. Total phenolic content was determined using the Folin–Ciocalteu (F–C) method. Almond skin extracts (ASE): soybean oil (1:4 v/v) mixtures containing 0.08% FeCl3 were prepared. Antioxidant activity was determined by conjugated dienes and trienes (CD and CT, respectively) measurements, peroxide value (PV), Trolox© equivalent antioxidant capacity (TEAC) and Photochemiluminescence (PCL). Phenolic content yield (p < 0.05) was higher in ASE irradiated at doses greater than 4 kGy (trial I) or 12.7 kGy (trial II) compared to the control. Increased antioxidant activity was observed in TEAC assay and PCL with lipid-soluble antioxidant capacity reagents in ASE irradiated above 4 kGy (trial I) and 12.7 kGy (trial II) compared to 0 kGy. Gamma irradiation of almond skins thus increased the yield of total phenolics content as well as enhanced antioxidant activity of extracts.
Gigleux, I., D.J.A. Jenkins, C.W.C. Kendall, A. Marchie, D.A. Faulkner, J.M.W. Wong, R. de Souza, A. Emam, T.L. Parker, E.A. Trautwein, K.G. Lapsley, P.W. Connelly, B. Lamarche, 2007. Comparison of a dietary portfolio diet of cholesterol-lowering foods and a statin on LDL particle size phenotype in hypercholesterolaemic participants. Brit. J. Nutr. 98(6):1229-1236.
The effect of diet v. statins on LDL particle size as a risk factor for CVD has not been examined. We compared, in the same subjects, the impact of a dietary portfolio of cholesterol-lowering foods and a statin on LDL size electrophoretic characteristics. Thirty-four hyperlipidaemic subjects completed three 1-month treatments as outpatients in random order: a very-low saturated fat diet (control); the same diet with 20 mg lovastatin; a dietary portfolio high in plant sterols (1 g/4200 kJ), soya proteins (21·4 g/4200 kJ), soluble fibers (9·8 g/4200 kJ) and almonds (14 g/4200 kJ). LDL electrophoretic characteristics were measured by non-denaturing polyacrylamide gradient gel electrophoresis of fasting plasma at 0, 2 and 4 weeks of each treatment. The reductions in plasma LDL-cholesterol levels with the dietary portfolio and with statins were comparable and were largely attributable to reductions in the estimated concentration of cholesterol within the smallest subclass of LDL (portfolio -0·69 (SE 0·10) mmol/l, statin -0·99 (SE 0·10) mmol/l). These were significantly greater (P<0·01) than changes observed after the control diet (-0·17 (SE 0·08) mmol/l). Finally, baseline C-reactive protein levels were a significant predictor of the LDL size responsiveness to the dietary portfolio but not to the other treatments. The dietary portfolio, like the statin treatment, had only minor effects on several features of the LDL size phenotype, but the pronounced reduction in cholesterol levels within the small LDL fraction may provide additional cardiovascular benefit over the traditional low-fat diet of National Cholesterol Education Program Step II.
Chen, C.-Y, P.E. Milbury, S.-K. Chung, J. Blumberg, 2007. Effect of almond skin polyphenols and quercetin on human LDL and apolipoprotein B-100 oxidation and conformation. J. Nutr. Biochem. 18 (12):785-794.
Almond skin polyphenolics (ASP) and vitamin C (VC) or E (VE) inhibit the Cu2+-induced generation of conjugated dienes in human lowdensity lipoprotein (LDL) in a synergistic manner. However, the mechanism(s) by which this synergy occurs is unknown. As modification of apolipoprotein (apo) B-100 is an early, critical step in LDL oxidation, we examined the effects of combining ASP or quercetin and antioxidant vitamins on the oxidation of this moiety as well as on the alteration of LDL conformation and electronegativity (LDL-). In a dose-dependent manner, ASP (0.12-2.0 Amol/L gallic acid equivalents) decreased tryptophan (Trp) oxidation by 6.7-75.7%, increased the generalized polarity (Gp) of LDL by 21.0-81.5% at 90 min and reduced the ratio of LDL- to total LDL (tLDL) by 38.2-83.8% at 5 h. The actions of ASP on these parameters were generally additive to those of VC and VE. However, a 10-25% synergy of ASP plus VC in protecting apo B-100 Trp against oxidation may result from their synergistic interaction in prolonging the lag time to oxidation. ASP and VE acted in synergy to reduce LDL-/tLDL by 24-43%. Quercetin’s actions were similar to ASP, though more effective at inhibiting Trp oxidation. Thus, ASP and quercetin reduce the oxidative modification of apo B-100 and stabilize LDL conformation in a dose-dependent manner, acting in an additive or synergistic fashion with VC and VE.
Ritter, M.M.C., G.P. Savage, 2007. Soluble and insoluble oxalate content of nuts. Journal of Food Composition and Analysis. 20:169-174.
This study was conducted to determine the oxalate contents in common nuts either locally grown or imported into New Zealand. Samples of imported nuts were purchased from supermarkets in Christchurch while locally grown nuts were obtained directly from the growers. In this experiment gastric soluble and intestinal soluble oxalates were extracted from the nuts using an in vitro assay, which involved incubations of the food samples for 2 h at 37 1C in gastric and intestinal juice. The extracted oxalates were then determined by HPLC chromatography. Roasted pistachio nuts and chestnuts contained very low levels (<85 mg/100 g fresh weight (FW)) of gastric soluble oxalate. Peanuts, Spanish peanuts, peanut butter, ginkgo, cashew nuts and pecan nuts all contained relatively low levels of gastric soluble oxalate (147–250 mg gastric soluble oxalate/100 g FW). Almonds, Brazil, pine and candle nuts contained high levels of gastric soluble oxalate (492.0–556.8 mg/100 g FW). The intestinal soluble oxalate is the fraction that will be absorbed in the small intestine. Peanuts, Spanish peanuts, peanut butter, ginkgo and pecan nuts all contained relatively low levels of intestinal soluble oxalate (129–173 mg intestinal soluble oxalate/100 g FW). Almonds, Brazil, cashew and candle nuts contained higher levels of intestinal soluble oxalate (216–305 mg/100 g FW). Pine nuts contained the highest levels of intestinal soluble oxalate (581 mg/100 g FW), while chestnuts and roasted pistachio nuts were low (72 and 77 mg /100 g FW). Overall the mean soluble oxalate content of nuts was 78% of the gastric soluble oxalate content (41–100%). The results obtained in this study confirm that the intestinal soluble oxalate contents of nuts range widely and people who have a tendency to form kidney stones would be wise to moderate their consumption of certain nuts.
Monagas, M., I. Garrido, R. Lebron-Aguilar, B. Bartolome, C. Gomez-Cordoves, 2007. Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of bioactive polyphenols. J. Agric. Food Chem. 55:8498-8507.
An exhaustive study of the phenolic composition of almond (Prunus dulcis (Mill.) D.A. Webb) skins was carried out in order to evaluate their potential application as a functional food ingredient. Using the HPLC-DAD/ESI-MS technique, a total of 33 compounds corresponding to flavanols, flavonols, dihydroflavonols and flavanones, and other nonflavonoid compounds were identified. Peaks corresponding to another 23 structure-related compounds were also detected. MALDI-TOF MS was applied to characterize almond skin proanthocyanidins, revealing the existence of a series of A- and B-type procyanidins and propelargonidins up to heptamers, and A- and B-type prodelphinidins up to hexamers. Flavanols and flavonol glycosides were the most abundant phenolic compounds in almond skins, representing up to 38-57% and 14-35% of the total quantified phenolics, respectively. Due to their antioxidant properties, measured as oxygen-radical absorbance capacity (ORAC) at 0.398-0.500 mmol Trolox/g, almond skins can be considered as a value-added byproduct for elaborating dietary antioxidant ingredients.
Li, N., X. Jia, C.-Y.O. Chen, J.B. Blumberg, Y. Song, W. Zhang, X. Zhang, G. Ma, J. Chen, 2007. Almond consumption reduces oxidative DNA damage and lipid peroxidation in male smokers. J. Nutr. 137:2717 -2722.
Smoking increases the risk of several chronic diseases associated with elevated oxidative stress status. Almonds are a good source of antioxidant nutrients and may diminish smoking-related biomarkers of oxidative stress. This study investigated whether almond consumption decreases biomarkers of oxidative stress in young male Chinese smokers. The Chinese CDC researchers conducted a randomized, crossover clinical trial with 60 healthy male soldiers (18-25 y) who were habitual smokers (5-20 cigarettes/d) and supplemented their diet with 84 g almonds or 120 g pork (to control for calories) daily for 4 wk with a 4-wk washout period between treatment periods. In addition, 30 healthy nonsmoking men were provided the same daily serving of pork as reference comparison. Blood and urine were collected and assessed for biomarkers of oxidative stress. Baseline values of urinary 8-hydroxy-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) and peripheral lymphocyte DNA strand breaks were significantly higher by 185, 64, and 97% in smokers than nonsmokers, whereas activities of plasma superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase were significantly lower by 15, 10, and 9%, respectively. After the almond intervention, serum a-tocopherol, SOD, and GPX increased significantly in smokers by 10, 35, and 16%, respectively and 8-OHdG, MDA, and DNA strand breaks decreased significantly by 28, 34, and 23%. No significant changes were found in smokers or nonsmokers after pork treatment. In smokers, after almond supplementation, the concentration of 8-OHdG remained significantly greater than in nonsmokers by 98%. These results suggest almond intake can enhance antioxidant defenses and diminish biomarkers of oxidative stress in smokers.
Josse, A.R., C.W.C. Kendall, L.S.A. Augustin, P.R. Ellis, D.J.A. Jenkins, 2007. Almonds and postprandial glycemia – a dose-response study. Metabolism. 56(3):400-404.
Almonds, together with other nuts, reduce serum cholesterol levels and may reduce the risk of coronary heart disease. There is much current interest in the relation of coronary heart disease to postprandial events. We have therefore assessed the effects of varying amounts of almonds on the postprandial blood glucose response to a carbohydrate meal. Our aim was to assess the effect of adding almonds to a bread meal. Nine healthy volunteers (2 women, 7 men; mean age, 27.8 years; mean body mass index, 22.9 kg/m2) were randomly fed with 3 test meals and 2 white bread control meals on separate days. Subjects were fed the meals after a 10- to 12-hour overnight fast. Each meal contained 50 g of available carbohydrate from white bread eaten alone or with 30, 60, or 90 g (~1, 2, or 3 oz) of almonds. Capillary fingerprick blood samples for glucose analysis were obtained at 0, 15, 30, 45, 60, 90, and 120 minutes. Glycemic responses were assessed by calculating the incremental area under the 2-hour blood glucose curve. The addition of almonds to white bread resulted in a progressive reduction in the glycemic index of the composite meal in a dose-dependent manner for the 30-g (105.8 ± 23.3), 60-g (63.0 ± 9.0), and 90-g (45.2 ± 5.8) doses of almonds (r = 0.524, n = 36, P = .001). We conclude that, in addition to lowering serum cholesterol levels, almonds may also reduce the glycemic impact of carbohydrate foods with which they are eaten.
Joice, C., 2007. A practical approach to the Portfolio Eating Plan; a dietary regime to prevent cardiovascular disease. Cah Nutr Diét. 42(1):42-45.
(As translated from French) Current dietary strategies for the treatment of coronary heart disease have expanded beyond the restriction of saturated and trans-fat and cholesterol to include viscous fibers, plant sterols, vegetable protein foods (soy) and nuts (almonds). Research at the University of Toronto, Canada, has shown that combining these dietary components in a single dietary strategy, known as the Portfolio eating plan, results in cholesterol reduction proven to be equivalent to a starting therapeutic dose of first generation statins. This overview of the clinical research studies demonstrates the effectiveness of the Portfolio eating plan and focuses on the necessary dietary modifications to realize the goals of this cardio-protective dietary strategy. In addition, a perspective is directed towards the Mediterranean diet, a regime well recognized in France for its cardiovascular benefits.
Jenkins, D.J.A., C.W.C. Kendall, T.H. Nguyen, J. Teitel, A. Marchie, M. Chius, A.Y. Taha, D.A. Faulkner, T. Kemp, J.M.W. Wong, R. de Souza, A. Emam, E.A. Trautwein, K.G. Lapsley, C. Holmes, R.G. Josse, L. A. Leiter, W. Singer, 2007. Effect on hematologic risk factors for coronary heart disease of a cholesterol reducing diet. Eur. J. Clin. Nutr. 61:483-492.
A dietary portfolio of cholesterol-lowering ingredients has proved effective in reducing serum cholesterol. However, it is not known whether this dietary combination will also affect hematologic risk factors for coronary heart disease (CHD). Reductions in hematocrit and polymorphonuclear leukocytes have been reported to improve cardiovascular risk. We, therefore, report changes in hematological indices, which have been linked to cardiovascular health, in a 1-year assessment of subjects taking an effective dietary combination (portfolio) of cholesterol-lowering foods.