Crespo, J.F., J.M. James, C. Fernandez-Rodriguez, J. Rodriguez, 2006. Food allergy: nuts and tree nuts. British Journal of Nutrition. 96, Suppl. 2, S95-S102.
Nuts are a well-defined cause of food allergy, which affect approximately 1% of the general population in the UK and the USA. There do appear to be differences in the frequency of nut allergy between different countries because of different dietary habits and cooking procedures. For example, in the USA and France, peanuts are one of the most frequent causes of food allergy, but in other countries, it seems to be less common. Genetic factors, in particular, appear to play a role in the development of peanut allergy. While the majority of nut allergens are seed storage proteins, other nut allergens are profilins and pathogenesis-related protein homologues, considered as panallergens because of their widespread distribution in plants. The presence of specific IgE antibodies to several nuts is a common clinical finding, but the clinical relevance of this cross-reactivity is usually limited. Allergic reactions to nuts appear to be particularly severe, sometimes even life-threatening, and fatal reactions following their ingestion have been documented. Food allergy is diagnosed by identifying an underlying immunological mechanism (i.e. allergic testing), and establishing a causal relationship between food ingestion and symptoms (i.e. oral challenges). In natural history investigations carried out in peanut-allergic children, approximately 20% of the cases outgrew their allergy or developed oral tolerance. The treatment of nut allergies should include patient and family education about avoiding all presentations of the food and the potential for a severe reaction caused by accidental ingestion. Patients and families should be instructed how to recognize early symptoms of an allergic reaction and how to treat severe anaphylaxis promptl
Ternus, M., K. Lapsley, K. McMahon, G. Johnson, 2006. Qualified health claim for nuts and heart disease prevention, development of consumer-friendly language. Nutrition Today. 41(2):62-66.
In 2003, the US Food and Drug Administration (FDA) began authorizing qualified health claims for conventional foods. Although the FDA had developed generic qualifying language for these claims, the language had not yet been tested with consumers. A shopping mall intercept was conducted among a random sample of 408 adults. The research tested consumer preference, understanding and believability, and impact on nut consumption of 4 variations of the ‘‘B’’ level qualified health claim for nuts and heart disease. The FDA generic language was used as the control. The results show that one of the alternatives was ranked significantly higher than the FDA generic claim for clarity and understandability but was similar in all other categories, including the scientific uncertainty associated with the claim. This research demonstrates that it is possible to meet FDA’s standards for truthful and not misleading health claims using consumer-friendly language.
Wijeratne, S.S.K.; R.. Amarowicz, F. Shahidi, 2006. Antioxidant activity of almonds and their by-products in food model systems. JAOCS. 83(3):223-230.
Antioxidant activities of almond whole seed, brown skin, and green shell cover extracts, at 100 and 200 ppm quercetin equivalents, were evaluated using a cooked comminuted port mode, a β-carotene-linoteate model, and a bulk stripped corn oil system. Retention of β-carotene in a β-carotene-linoleate model system by almond whole seed, brown skin, and green shell cover extracts was 84-96, 74-83, and 71-93% respectively. In a bulk stripped corn oil system, green shell cover extract performed better than brown skin and whole seed extracts in inhibiting the formation of both primary and secondary oxidation products, while in a cooked comminuted port model system, green shell cover and brown skin extracts inhibited the formation of TBARS, total volatiles and hexanal more effectively than did the whole seed extract. HPLC analysis revealed the presence of caffeic, ferulic, p-coumaric and sinapic acids as the major phenolic acids in all three almond extracts examined.
Brufau, G., J. Boatella, M. Rafecas, 2006. Nuts: source of energy and macronutrients. British Journal of Nutrition. 96, Suppl. 2, S24-S28.
On the basis of the high fat content of nuts, they are traditionally considered as foods that provide a high amount of energy. However, epidemiologic and clinical observations do not indicate an association between nut intake and increased BMI. There is a notorious variability in macronutrient composition among nuts, although they have some consistent patterns. Nuts contain all major macronutrients: protein, carbohydrate, and fat. The total protein content is relatively high, which makes them a good source of plant protein (especially for vegetarians). Although nuts contain low amounts of some essential amino acids, this is not a nutritional concern due to the complement of protein. In addition, nuts have a low lysine:arginine ratio, which is inversely associated with the risk of developing hypercholesterolemia and atherosclerosis. Carbohydrates are the second highest macronutrient in nuts in terms of total calories provided. The fat fraction is characterized by a high amount of unsaturated fatty acids and a low content of saturated fatty acids. In conclusion, the high content in unsaturated fatty acids, the low lysine:arginine ratio, and the presence of other bioactive molecules (such as fiber, phytosterols, vitamin and other antioxidants, and minerals) make the addition of nuts to healthy diets a useful tool for the prevention of cardiovascular heart diseases.
Wijeratne, S. S. K., M. M. Abou-Zaid, and F. Shahidi. 2006. Antioxidant polyphenols in almond and its coproducts. J. Agric. Food Chem. 54:312-318.
Antioxidant efficacy of defatted almond whole seed, brown skin, and green shell cover extracts was evaluated by monitoring inhibition of human low-density lipoprotein (LDL) oxidation, inhibition of DNA scission, and metal ion chelation activities. The total phenolic contents of ethanolic extracts of brown skin and green hell cover of almond were 10 and 9 times higher than that of the whole seed, respectively. Brown skin extract at 50 ppm effectively inhibited copper-induced oxidation of human LDL cholesterol compared to whole seed and green shell cover extracts, which reached the same level of efficacy at 200 ppm. Green shell over extract at 50 ppm level completely arrested peroxyl radical-induced DNA scission, whereas 100 ppm of brown skin and whole seed extracts was required for similar efficiencies. All three almond extracts exhibited excellent metal ion chelation efficacies. High-performance liquid chromatographic (HPLC) analysis revealed the presence of quercetin, isorhamnetin, quercitrin, kaempferol 3-O-rutinoside, isorhamnetin 3-O-glucoside, and morin as the major flavonoids in all extracts.
Ros, E., J. Mataix, 2006. Fatty acid composition of nuts – implications for cardiovascular health. British Journal of Nutrition. 96, Suppl. 2, S29-S35.
It is well established that, due to their high content of saturated fatty acids (SFA), the intake of meat and meat products is strongly associated with elevated blood cholesterol concentrations and an increased risk of hypertension, diabetes and cardiovascular diseases. Conversely, the intake of foods rich in unsaturated fatty acids, such as those contained in most vegetable fats and oils and oily fish, is associated with improved lipid profiles, a lower potency of intermediate biomarkers of atherosclerosis and lesser incidence of cardiovascular diseases. There are persuasive evidences that dietary substitution of monounsaturated fatty acids (MUFA) or n-6 polyunsaturated fatty acids (PUFA) for SFA lowers blood cholesterol and may have beneficial effects on inflammation, thrombosis, and vascular reactivity. MUFA may have an advantage over PUFA because enrichment of lipoprotein lipids with MUFA increases their resistance to oxidation. Marine n-3 PUFA have a number of anti-atherosclerotic effects, including anti-arrhythmic properties and, at relatively high doses, reduce serum triglycerides. These effects appear to be shared in part by vegetable n-3 PUFA. Nuts are natural foods rich in unsaturated fatty acids; most nuts contain substantial amounts of MUFA, while walnuts are especially rich in both n-6 and n-3 PUFA. Healthy fats in nuts contribute to the beneficial effects of frequent nut intake observed in epidemiological studies (prevention of coronary heart disease, diabetes, and sudden death) and in short-term feeding trials (cholesterol lowering, LDL resistance to oxidation, and improved endothelial function).
Milbury, P. E., C.-Y. Chen, G. G. Dolnikowski, J. B. Blumberg, 2006. Determination of flavonoids and phenolics and their distribution in almonds. J. Agr. Food Chem. 54(14):5027-5033.
Limited information is available concerning the qualitative and quantitative composition of polyphenolic compounds, especially flavonoids, in almonds. We determined total phenols, flavonoids, and phenolic acids in California almond (Prunus dulcis) skins and kernels among the principal almond varieties (Butte, Carmel, Fritz, Mission, Monterey, Nonpareil, Padre, and Price) with high-performance liquid chromatography (HPLC)/electrochemical detection and UV detection. Liquid chromatography/tandem mass spectrometry under identical HPLC conditions was utilized to verify identities of the predominant flavonoids and phenolic acids. Total phenols ranged from 127 (Fritz) to 241 (Padre) mg gallic acid equivalents/100 g of fresh weight. The analyses were compiled to produce a data set of 18 flavonoids and three phenolic acids. The predominant flavonoids were isorhamnetin-3-O-rutinoside and isorhamnetin-3-O-glucoside (in combination), catechin, kaempferol-3-O-rutinoside, epicatechin, quercetin-3-O-galactoside, and isorhamnetin-3-O-galactoside at 16.81, 1.93, 1.17, 0.85, 0.83, and 0.50 mg/100 g of fresh weight almonds, respectively. Using the existing approach of calculating only the aglycone form of flavonoids for use in the U.S. Department of Agriculture nutrient database, whole almonds would provide the most prevalent aglycones of isorhamnetin at 11.70 (3.32), kaempferol at 0.60 (0.17), catechin at 1.93 (0.55), quercetin at 0.72 (0.20), and epicatechin at 0.85 (0.24) mg/100 g of fresh weight (mg/oz serving), respectively. These data can lead to a better understanding of the mechanisms of action underlying the relationship between almond consumption and health-related outcomes and provide values for whole and blanched almonds suitable for inclusion in nutrient databases
Kurlandsky, S.B., K.S. Stote, 2006. Cardioprotective effects of chocolate and almond consumption in healthy women. Nutr. Res. 26:509-516.
The primary objective of this study was to identify potentially synergistic or additive effects of combining consumption of dark chocolate with almonds as part of a low-fat diet on circulating levels of serum lipids and inflammatory markers: intercellular adhesion molecule (ICAM), vascular adhesion molecule, and high-sensitivity C-reactive protein. A 6-week, 4-armed parallel design was used; 49 healthy normocholesterolemic women participated. Subjects were randomized to 1 of 3 treatments: chocolate (41 g/d), almonds (60 g/d), chocolate and almonds, or control (no chocolate or almonds). All subjects followed the National Cholesterol Education Program Therapeutic Lifestyle Changes diet. All subjects improved dietary intakes in accordance with guidelines, and no subjects gained or lost weight. Serum cholesterol concentrations showed no changes after 6 weeks; however, triacylglycerol levels were reduced by approximately 21%, 13%, 19%, and 11% ( P < .05), in the chocolate, almond, chocolate and almond, and control groups, respectively. Circulating ICAM levels decreased significantly by 10% in the treatment group consuming chocolate only (P = .027). No significant changes were observed for vascular adhesion molecule and high-sensitivity C-reactive protein levels in any treatment group. No synergistic or additive effects were observed when both products were consumed. In conclusion, consumption of chocolate and almonds as part of the Therapeutic Lifestyle Changes diet for 6 weeks showed no harmful effects in healthy women; all dietary modifications improved serum triacylglycerol levels, and consumption of chocolate reduced levels of circulating ICA
Jia, X., N. Li, W. Zhang, X. Zhang, K. Lapsley, G. Huang, J. Blumberg, G. Ma, J. Chen, 2006. A pilot study on the effects of almond consumption on DNA damage and oxidative stress in smokers. Nutrition and Cancer. 54(2), 179-183.
The effects of almond consumption on DNA damage and oxidative stress among cigarette smokers were studied. Thirty healthy adult male regular smokers were randomly divided into three groups, 10 subjects per group. Group A (control group) did not receive any almonds. Subjects in Groups B and C received 3 oz and 6 oz (84 g and 168 g) of almonds each day respectively for 4 wk. Two known biomarkers for DNA damage, urinary 8-hydroxy-2′-deoxyguanosine (8-OH-dG) and single strand DNA breaks of peripheral blood lymphocytes, were measured by enzyme-linked immunosorbent assay and comet assay, respectively. In addition, plasma malondialdehyde (MDA) level, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities were measured as biomarkers for oxidative stress. The results showed lower levels of urinary 8-OH-dG and single strand DNA breaks in the two almond-treated groups as compared with the control group. Furthermore, MDA levels in the almond-treated groups were lower than the controls. However, no significant effects of almonds on SOD and GSH-PX activities were found. In conclusion, results from this pilot study indicate that almond consumption has preventive effects on oxidative stress and DNA damage caused by smoking. A larger, randomized, placebo-controlled clinical trial on almonds will be initiated in the near future.
Griel, A.E., P.M. Kris-Etherton, 2006. Tree nuts and the lipid profile: a review of clinical studies. British Journal of Nutrition. 96, Suppl. 2, S68-S78
Tree nuts have a fatty acid profile that favorably affects blood lipids and lipoproteins. They are low in saturated fat and high in unsaturated fatty acids and are rich sources of other nutrients. An extensive database consistently shows total and LDL cholesterol-lowering effects of diets low in saturated fat and cholesterol and high in unsaturated fat provided by a variety of tree nuts. Collectively, a summary of studies conducted to date shows that tree nuts reduce LDL cholesterol by 3-19% compared with Western and lower-fat diets. Nuts also contain many nutrients and bioactive compounds that appear to contribute to the favorable effects on lipids and lipoproteins – these include plant sterols, dietary fiber and antioxidants. Because of their unique nutrient profile, nuts can be part of a diet that features multiple heart-healthy foods resulting in a cholesterol lowering response that surpasses that of cholesterol-lowering diets typically used to reduce CVD risk.