Rehm, C.D., A. Drewnowski. 2017. Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: results of an NHANES modeling study. Nutr. J. doi:10.1186/s12937017-0238-5.
Background: Replacing typical American snacks with tree nuts may be an effective way to improve diet quality and compliance with the 2015–2020 Dietary Guidelines for Americans (DGAs). Objective: To assess and quantify the impact of replacing typical snacks with composite tree nuts or almonds on diet metrics, including empty calories (i.e., added sugars and solid fats), individual fatty acids, macronutrients, nutrients of public health concern, including sodium, fiber and potassium, and summary measures of diet quality. Methods: Food pattern modeling was implemented in the nationally representative 2009–2012 National Health and Examination Survey (NHANES) in a population of 17,444 children and adults. All between-meal snacks, excluding beverages, were replaced on a per calorie basis with a weighted tree nut composite, reflecting consumption patterns in the population. Model 1 replaced all snacks with tree nuts, while Model 2 exempted whole fruits, non-starchy vegetables, and whole grains (>50% of total grain content). Additional analyses were conducted using almonds only. Outcomes of interest were empty calories (i.e., solid fats and added sugars), saturated and mono- and polyunsaturated fatty acids, fiber, protein, sodium, potassium and magnesium. The Healthy Eating Index-2010, which measures adherence to the 2010 Dietary Guidelines for Americans, was used as a summary measure of diet quality. Results: Compared to observed diets, modeled food patterns were significantly lower in empty calories (−20.1% and −18.7% in Model 1 and Model 2, respectively), added sugars (−17.8% and −16.9%), solid fats (−21.0% and −19.3%), saturated fat (−6.6% and −7.1%)., and sodium (−12.3% and −11.2%). Modeled patterns were higher in oils (65.3% and 55.2%), monounsaturated (35.4% and 26.9%) and polyunsaturated fats (42.0% and 35.7%), plant omega 3 s (53.1% and 44.7%), dietary fiber (11.1% and 14.8%), and magnesium (29.9% and 27.0%), and were modestly higher in potassium (1.5% and 2.9%). HEI-2010 scores were significantly higher in Model 1 (67.8) and in Model 2 (69.7) compared to observed diets (58.5). Replacing snacks with almonds only produced similar results; the decrease in sodium was more modest and no increase in plant omega-3 fats was observed. Conclusion: Replacing between-meal snacks with tree nuts or almonds led to more nutrient-rich diets that were lower in empty calories and sodium and had more favorable fatty acid profiles. Food pattern modeling using NHANES data can be used to assess the likely nutritional impact of dietary guidance.
Noble, K.A., C. Liu, S.K. Sathe, K.H. Roux. 2017. A cherry seed-derived spice, Mahleb, is recognized by anti-almond antibodies including almond-allergic patient IgE. J. Food Sci. doi: 10.111/1750.3841.13757.
There are a number of examples of immunologic cross-reactivity elicited by pollens, fruits, seeds, and nuts of closely related plant species. Such cross-reactivity is of particular concern for patients with food allergies. In this report, we investigated a spice (mahleb) that is prepared from the kernel of the St. Lucie cherry, Prunus mahaleb, for cross-reactivity with almond (Prunus dulcis), using enzyme-linked immunosorbent assay (ELISA) and Western blot. Almond and mahleb are members of the same genus. Cross-reactivity between the mahleb and almond was demonstrated by reaction of cherry and almond kernel protein extracts with antibodies raised against almond proteins. Almond-specific murine monoclonal IgG, rabbit polyclonal IgG, and almond-allergic serum IgE each exhibited cross-reactivity with cherry kernel protein. Because of the demonstrated cross-reactivity between almond and mahleb, these findings should be of special concern to almond-allergic patients and attending medical personnel.
Bisignano, C., G. Mandalari, A. Smeriglio, D. Trombetta, M.M. Pizzo, M. Pennisi, M.T. Sciortino. 2017. Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell. Viruses. 9, 178; doi:10.3390/v9070178.
Theaimofthepresentresearchwastodeterminetheeffectofalmondskinextractsonherpes simplex virus 1 (HSV-1) replication. Drug-resistant strains of HSV frequently develop following therapeutic treatment. Therefore, the discovery of novel anti-HSV drugs deserves great effort. Here, we tested both natural (NS) and blanched (BS) polyphenols-rich almond skin extracts against HSV-1. HPLC analysis showed that the prevalent compounds in NS and BS extracts contributing to their antioxidant activity were quercetin, epicatechin and catechin. Results of cell viability indicated that NS and BS extracts were not toxic to cultured Vero cells. Furthermore, NS extracts were more potent inhibitors of HSV-1 than BS extracts, and this trend was in agreement with different concentrations of flavonoids. The plaque forming assay, Western blot and real-time PCR were used to demonstrate that NS extracts were able to block the production of infectious HSV-1 particles. In addition, the viral binding assay demonstrated that NS extracts inhibited HSV-1 adsorption to Vero cells. Our conclusion is that natural products from almond skin extracts are an extraordinary source of antiviral agents and provide a novel treatment against HSV-1 infections.
Duong, Q.H., K.D. Clark, K.G. Lapsley, R.B. Pegg. 2017. Quantification of inositol phosphates in almond meal and almond brown skins by HPLC/ESI/MS. Food Chem. 229:84-92.
The extraction and measurement of all six forms of inositol phosphates (InsPs) in almond meal and brown skins were improved from existing methods by pH adjustment, supplementation of EDTA, and rapid analysis via anion-exchange high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. The quantity of InsPs in six major almond cultivars ranged from 8 to 12 μmol/g in the meal and 5 to 14 μmol/g in the brown skins. InsP6 was the dominant form, but lower forms still accounted for ∼20% of the total InsPs molar concentration in a majority of the samples. InsPs contributed 32–55% of the organic phosphorus content and 20–38% of the total phosphorus content in the meal. In brown skins, these ranges were 44–77% and 30–52%, respectively. The successful application of this analytical method with almonds demonstrates its potential use for re-examination of the reported phytic acid contents in many other tree nuts, legumes, grains, and complex foods.