Archive

Comparing the effects of consuming almonds or biscuits on body weight in habitual snackers: a 1-year randomized controlled trial. 

Brown, R. C., L. Ware, A.R. Gray, S.L. Tey, A. Chisholm, 2023. Comparing the effects of consuming almonds or biscuits on body weight in habitual snackers: a 1-year randomized controlled trial. Amer. J. Clin. Nutr. 118(1):228–240. https://doi.org/10.1016/j.ajcnut.2023.05.015

Background: Almonds are nutrient rich, providing a healthier alternative to many snacks. Studies report health benefits with regular almond consumption without adverse weight gain. However, most interventions have been relatively short or have included additional dietary advice. Objectives: Taking a pragmatic approach, we compared consumption of almonds compared with biscuits on body weight and other health outcomes in a population of regular snackers of discretionary foods, hypothesizing the almonds will displace some of the less-healthful snacks in their current diets. Methods: We randomly assigned 136 nonobese habitual discretionary snackers to receive almonds or biscuits daily for 1 y. These isocaloric snacks provided either 10% of participants’ total energy (TE) requirements or 1030 kJ (equivalent to 42.5 g almonds), whichever was greater. Anthropometry, blood biomarkers, diet, appetite, sleep, and physical activity were assessed at baseline, 3, 6, and 12 mo, and body composition and RMR at baseline and 12 mo. Results: The difference in changes for body weight from baseline to 12 mo was not statistically significant (geometric means: 67.1 and 69.5 kg for almonds and 66.3 and 66.3 kg for biscuits, P = 0.275). There were no statistically significant differences in changes for body composition or other nondietary outcomes (all P ≥ 0.112). Absolute intakes of protein; total, polyunsaturated, and monosaturated fat; fiber; vitamin E; calcium; copper; magnesium; phosphorous; and zinc, and % TE from total monounsaturated, and polyunsaturated fat statistically significantly increased from baseline (all P ≤ 0.033), whereas % TE from carbohydrate and sugar statistically significantly (both P ≤ 0.014) decreased from baseline, in the almond compared with the biscuit group. Conclusions: Almonds can be incorporated into the diets of habitual snackers to improve diet quality, without evidence for changes in body weight, compared with a popular discretionary snack food.

Acute feeding with almonds compared to a carbohydrate-based snack improves appetite-regulating hormones with no effect on self-reported appetite sensations: a randomised controlled trial. 

Carter, S., A.M. Hill, J.D. Buckley, S.Y. Tan, G.B. Rogers, A.M. Coates, 2023. Acute feeding with almonds compared to a carbohydrate-based snack improves appetite-regulating hormones with no effect on self-reported appetite sensations: a randomised controlled trial. Eur. J. Nutr. 62(2):857–866. https://doi.org/10.1007/s00394-022-03027-2

Purpose: Early satiety has been identified as one of the mechanisms that may explain the beneficial effects of nuts for reducing obesity. This study compared postprandial changes in appetite-regulating hormones and self-reported appetite ratings after consuming almonds (AL, 15% of energy requirement) or an isocaloric carbohydrate-rich snack bar (SB). Methods: This is a sub-analysis of baseline assessments of a larger parallel-arm randomised controlled trial in overweight and obese (Body Mass Index 27.5-34.9 kg/m2) adults (25-65 years). After an overnight fast, 140 participants consumed a randomly allocated snack (AL [n = 68] or SB [n = 72]). Appetite-regulating hormones and self-reported appetite sensations, measured using visual analogue scales, were assessed immediately before snack food consumption, and at 30, 60, 90 and 120 min following snack consumption. A sub-set of participants (AL, n = 49; SB, n = 48) then consumed a meal challenge buffet ad libitum to assess subsequent energy intake. An additional appetite rating assessment was administered post buffet at 150 min. Results: Postprandial C-peptide area under the curve (AUC) response was 47% smaller with AL compared to SB (p < 0.001). Glucose-dependent insulinotropic polypeptide, glucagon and pancreatic polypeptide AUC responses were larger with AL compared to SB (18%, p = 0.005; 39% p < 0.001; 45% p < 0.001 respectively). Cholecystokinin, ghrelin, glucagon-like peptide-1, leptin and polypeptide YY AUCs were not different between groups. Self-reported appetite ratings and energy intake following the buffet did not differ between groups. Conclusion: More favourable appetite-regulating hormone responses to AL did not translate into better self-reported appetite or reduced short-term energy consumption. Future studies should investigate implications for longer term appetite regulation.

Association of tree nut consumption with cardiovascular disease and cardiometabolic risk factors and health outcomes in US adults: NHANES 2011-2018.

Lopez-Neyman, S. M., N. Zohoori, K.S. Broughton, D.C. Miketinas, 2023. Association of tree nut consumption with cardiovascular disease and cardiometabolic risk factors and health outcomes in US adults: NHANES 2011-2018. Curr. Dev. Nutr. 7(10):102007. https://doi.org/10.1016/j.cdnut.2023.102007

Background: Tree nuts are nutrient dense, and their consumption has been associated with improvements in health outcomes. Objective: To estimate the usual tree nut intake and examine the association between tree nut consumption and cardiometabolic (CM) health outcomes in a nationally representative sample of US adults. Methods: Cross-sectional data were analyzed from a sample of 18,150 adults aged ≥ 20y who provided at least one reliable 24-h dietary recall and had complete data for the variables of interest in the NHANES 2011-2018. Tree nut consumers were defined as those consuming ≥ ¼ ounce/d (7.09 g). The National Cancer Institute Method was used to estimate the usual tree nut intake among consumers. Measurement error calibrated regression models were used to assess the association between tree nut consumption and each health outcome of interest. Results: Approximately 8% of all participants (n = 1238) consumed tree nuts and had a mean ± SE usual intake of 39.5 ± 1.8 g/d. Tree nut consumers were less likely to have obesity (31% vs. 40%, P < 0.001) and low high-density lipoprotein cholesterol (22% vs. 30%, P < 0.001) compared with nonconsumers. Moreover, tree nut consumers had a lower mean waist circumference (WC) (97.1 ± 0.7 vs. 100.5 ± 0.3 cm, P < 0.001) and apolipoprotein B (87.5 ± 1.2 vs. 91.8 ± 0.5 mg/dL, P = 0.004) than nonconsumers. After adjusting models for demographics and lifestyle covariates, the difference in WC between average intake (33.7 g/d) and low threshold intake (7.09/g) of tree nuts was -1.42 ± 0.58 cm (P = 0.005). Conclusions: Most US adults do not consume tree nuts, yet modest consumption was associated with decreased prevalence of cardiovascular disease and CM risk factors and improvement for some health outcome measures.

Almonds vs. carbohydrate snacks in an energy-restricted diet: Weight and cardiometabolic outcomes from a randomized trial. 

Carter, S., A.M. Hill, L.C. Mead, H.Y. Wong, C. Yandell, J.D. Buckley, S.Y. Tan, G.B. Rogers, F. Fraysse, A.M. Coates, 2023. Almonds vs. carbohydrate snacks in an energy-restricted diet: Weight and cardiometabolic outcomes from a randomized trial. Obesity 31(10):2467–2481.

Objective: This study evaluated weight and cardiometabolic outcomes after a 3-month energy-restricted diet (-30%) containing almonds (almond-enriched diet [AED]) or containing carbohydrate-rich snacks (nut-free control diet [NFD]) (Phase 1), followed by 6 months of weight maintenance (Phase 2). Methods: Participants (25-65 years old) with overweight or obesity (BMI 27.5-34.9 kg/m2 ) were randomly allocated to AED (n = 68) or NFD (n = 72). Results: Both groups lost weight during Phase 1 (p < 0.001) (mean [SE], -7.0 [0.5] kg AED vs. -7.0 [0.5] kg NFD, p = 0.858) and Phase 2 (p = 0.009) (-1.1 [0.5] kg AED vs. -1.3 [0.6] NFD, p = 0.756), with improvements in percentage lean mass after Phase 2 (4.8% [0.3%], p < 0.001). Reductions occurred in fasting glucose (-0.2 [0.07] mmol/L, p = 0.003), insulin (-8.1 [4.0] pmol/L, p = 0.036), blood pressure (-4.9 [0.8] mm Hg systolic, -5.0 [0.5] mm Hg diastolic, p < 0.001), total cholesterol (-0.3 [0.1] mmol/L), low-density lipoprotein (LDL) (-0.2 [0.1] mmol/L), very low-density lipoprotein (-0.1 [0.03] mmol/L), and triglycerides (-0.3 [0.06] mmol/L) (all p < 0.001), and high-density lipoprotein increased (0.1 [0.02] mmol/L, p = 0.011) by the end of Phase 2 in both groups. There were group by time interactions for lipoprotein particle concentrations: very small triglyceride-rich (-31.0 [7.7] nmol/L AED vs. -4.8 [7.9] nmol/L NFD, p = 0.007), small LDL (-109.3 [40.5] nmol/L AED vs. -20.7 [41.6] nmol/L NFD, p = 0.017), and medium LDL (-24.4 [43.4] nmol/L AED vs. -130.5 [44.4] nmol/L NFD, p = 0.045). Conclusions: An energy-restricted AED resulted in weight loss and weight loss maintenance comparable to an energy-restricted NFD, and both diets supported cardiometabolic health. The AED resulted in greater improvements in some lipoprotein subfractions, which may enhance reductions in cardiovascular risk.