Archive

Tree nut allergens.

Roux, K.H., S.S. Teuber, S.K. Sathe, 2003. Tree nut allergens. Int Arch Allergy Immunol. 131:234–244.

Allergic reactions to tree nuts can be serious and life threatening. Considerable research has been conducted in recent years in an attempt to characterize those allergens that are most responsible for allergy sensitization and triggering. Both native and recombinant nut allergens have been identified and characterized and, for some, the IgE-reactive epitopes described. Some allergens, such as lipid transfer proteins, profilins, and members of the Bet v 1-related family, represent minor constituents in tree nuts. These allergens are frequently cross-reactive with other food and pollen homologues, and are considered panallergens. Others, such as legumins, vicilins, and 2S albumins, represent major seed storage protein constituents of the nuts. The allergenic tree nuts discussed in this review include those most commonly responsible for allergic reactions such as hazelnut, walnut, cashew, and almond as well as those less frequently associated with allergies including pecan, chestnut, Brazil nut, pine nut, macadamia nut, pistachio, coconut, Nangai nut, and acorn.

Tree nut allergy.

Teuber, S.S., S.S. Comstock, S.K. Sathe, K.H. Roux, 2003. Tree nut allergy. Current Allergy and Asthma Reports. 3:54–61.

Tree nuts are clinically associated with severe immunoglobulin E–mediated systemic allergic reactions independent of pollen allergy and with reactions that are usually confined to the oral mucosa in patients with immunoglobulin E directed toward cross-reacting pollen allergens. The latter reactions can progress to severe and life-threatening episodes in some patients. Many patients with severe tree nut allergy are co-sensitized to peanut. Clinical studies on cross-reactivity between the tree nuts are few in number, but based on reports to date, avoidance of the other tree nuts once sensitivity is diagnosed appears prudent unless specific challenges are performed to ensure clinical tolerance. Even then, great care must be taken to avoid cross-contamination. As with other severe food allergies, a recurrent problem in clinical management is the failure of physicians to prescribe self-injectable epinephrine to patients who are at risk of anaphylaxis.

Cashew allergy: observations of 42 children without associated peanut allergy.

Rancé, F., E. Bidat, T. Bourrier, D. Sabouraud, 2003. Cashew allergy: observations of 42 children without associated peanut allergy. Allergy. 58:1311–1314.

Background: Cashew allergy seems to be increasingly frequent. The goal of the present study was to analyse the clinical features and results of investigations of 42 children with cashew allergy. Methods: The clinical features and results of skin prick tests, specific IgE assays, and food challenges were analysed. Results: The mean age at first allergic reaction was 2 years and the mean age at diagnosis of cashew allergy was 2.7 years. One in five children (12%) had a prior history of exposure to cashew nuts. Fifty-six per cent had skin symptoms, 25% had respiratory signs and 17% had digestive signs. Eighteen children had proven, associated food allergies (pistachio, seven; egg, five; mustard, three; shrimp, two; cow milk, one). The mean wheal diameter of the skin prick tests was 7 mm (3–16 mm) and the mean specific IgE level was 3.1 kUA/L (<0.35–>100 kUA/L). Eight children had positive food challenges. Conclusion: The increase in cashew allergy is worrying because it affects young children who may have a reaction without ever having been exposed to cashews. Almost one-third of children are allergic to pistachios, which belong to the same botanical family as cashews. Clinical history is generally and sufficiently suggestive to diagnose cashew allergy without recourse to food challenges.

Ana o 2, a major cashew (Anacardium occidentale L.) nut allergen of the legumin family.

Wang, F., J.M. Robotham, S.S. Teuber, S.K. Sathe, K.H. Roux, 2003. Ana o 2, a major cashew (Anacardium occidentale L.) nut allergen of the legumin family. Int Arch Allergy Immunol. 132:27–39.

Background: We recently cloned and described a vicilin and showed it to be a major cashew allergen. Additional IgE-reactive cashew peptides of the legumin group and 2S albumin families have also been reported. Here, we attempt to clone, express and characterize a second major cashew allergen. Methods: A cashew cDNA library was screened with human IgE and rabbit IgG anticashew extract antisera, and a reactive nonvicilin clone was sequenced and expressed as a fusion protein in Escherichia coli.  Immunoblotting was used to screen for reactivity with patients’ sera, and inhibition of immunoblotting was used to identify the corresponding native peptides in cashew nut extract. The identified allergen was subjected to linear epitope mapping using SPOTs solid-phase synthetic peptide technology. Results: Sequence analysis showed the selected clone, designated Ana o 2, to encode for a member of the legumin family (an 11S globulin) of seed storage proteins. By IgE immunoblotting, 13 of 21 sera (62%) from cashew-allergic patients were reactive. Immunoblot inhibition data showed that the native Ana o 2 constitutes a major band at approximately 33 kD and a minor band at approximately 53 kD. Probing of overlapping synthetic peptides with pooled human cashew-allergic sera identified 22 reactive peptides, 7 of which gave strong signals. Several Ana o 2 epitopes were shown to overlap those of the peanut legumin group allergen, Ara h 3, in position but with little sequence similarity. Greater positional overlap and identity was observed between Ana o 2 and soybean glycinin epitopes. Conclusions: We conclude that this legumin-like protein is a major allergen in cashew nut.

Nut consumption and body weight

Sabaté, J., 2003.  Nut consumption and body weight. Am J Clin Nutr. 78(suppl):647S-50S.

Frequent nut consumption is associated with lower rates of coronary artery disease (CAD). Also, nut-rich diets improve the serum lipid profile of participants in dietary intervention trials. However, nuts are fatty foods, and in theory their regular consumption may lead to body weight gain. Because obesity is a major public health problem and a risk factor for CAD, clinicians and policy makers ponder several questions. Will hypercholesterolemic patients advised to consume nuts gain weightý Is recommending increased nut consumption to the general population for CAD prevention sound public health adviceý Epidemiologic studies indicate an inverse association between frequency of nut consumption and body mass index. In well-controlled nut feeding trials, no changes in body weight were observed. Some studies on free-living subjects in which no constraints on body weight are imposed show a non-significant tendency to lower weight while subjects are on the nut diets. In another line of evidence, preliminary data indicate that subjects on nut-rich diets excrete more fat in stools. Further research is needed to study the effects of nut consumption on energy balance and body weight. In the meantime, the available cumulative data do not indicate that free-living people on self-selected diets including nuts frequently have a higher body mass index or a tendency to gain weight.

Plant-based foods and prevention of cardiovascular disease: an overview

Hu, F.B., 2003.  Plant-based foods and prevention of cardiovascular disease: an overview. Am J Clin Nutr. 78:544S-51S.

Evidence from prospective cohort studies indicates that a high consumption of plant-based foods such as fruit and vegetables, nuts, and whole grains is associated with a significantly lower risk of coronary artery disease and stroke. The protective effects of these foods are probably mediated through multiple beneficial nutrients contained in these foods, including mono- and polyunsaturated fatty acids, n-3 fatty acids, antioxidant vitamins, minerals, phytochemicals, fiber, and plant protein. In dietary practice, healthy plant-based diets do not necessarily have to be low in fat. Instead, these diets should include unsaturated fats as the predominant form of dietary fat (e.g., fats from natural liquid vegetable oils and nuts), whole grains as the main form of carbohydrate, an abundance of fruit and vegetables, and adequate n-3 fatty acids. Such diets, which also have many other health benefits, deserve more emphasis in dietary recommendations to prevent chronic diseases.

Characterization of the soluble allergenic proteins of cashew nut (Anacardium occidentale L.).

Teuber, S.S., S.K. Sathe, W.R. Peterson, K.H. Roux, 2002. Characterization of the soluble allergenic proteins of cashew nut (Anacardium occidentale L.). J Agric Food Chem. 50(22):6543-6549.

The allergens associated with cashew food allergy have not been well-characterized. We sought to identify the major allergens in cashew nut by performing IgE immunoblots to dissociated and reduced or nonreduced cashew protein extracts, followed by sequencing of the peptides of interest. Sera from 15 subjects with life-threatening reactions to cashews and 8 subjects who tolerate cashews but have life-threatening reactions to other tree nuts were compared. An aqueous cashew protein extract containing albumin/globulin was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and subjected to IgE immunoblotting using patient sera. Selected IgE reactive bands were subjected to N-terminal amino acid sequencing. Each of the 15 sera from cashew-allergic subjects showed IgE binding to the cashew protein extract. The dominant IgE-binding antigens in the reduced preparations included peptides in the 31-35 kD range, consistent with the large subunits of the major storage 13S globulin (legumin-like protein). Low-molecular-weight polypeptides of the 2S albumin family, with similarity to the major walnut allergen Jug r 1, also bound IgE. The sera from eight patients who tolerate cashew but displayed allergies to other tree nuts showed only minimal or no IgE binding to cashew. Cashew food allergy is associated with the presence of IgE directed against the major seed storage proteins in cashew, including the 13S globulin (legumin group) and 2S albumins, both of which represent major allergen classes in several plant seeds. Thus, the legumin-group proteins and 2S albumins are again identified as major food allergens, which will help further research into seed protein allergenicity.

A voluntary registry for peanut and tree nut allergy: Characteristics of the first 5149 registrants.

Background: A voluntary registry of individuals with peanut and/or tree nut allergy was established in 1997 to learn more about these food allergies. Objective: The purpose of this study was to elucidate a variety of features of peanut and tree nut allergy among the first 5149 registry participants. Methods: The registry was established through use of a structured questionnaire distributed to all members of the Food Allergy and Anaphylaxis Network and to patients by allergists. Parental surrogates completed the forms for children under the age of 18 years. Results: Registrants were primarily children (89% of registrants were younger than 18 years of age; the median age was 5 years), reflecting the membership of the Network. Isolated peanut allergy was reported by 3482 registrants (68%), isolated tree nut allergy by 464 (9%), and allergy to both foods by 1203 (23%). Registrants were more likely to have been born in October, November, or December (odds ratio, 1.2; 95% CI, 1.18-1.23; P < .0001). The median age of reaction to peanut was 14 months, and the median age of reaction to tree nuts was 36 months; these represented the first known exposure for 74% and 68% of registrants, respectively. One half of the reactions involved more than 1 organ system, and more than 75% required treatment, frequently from medical personnel. Registrants with asthma were more likely than those without asthma to have severe reactions (33% vs 21%; P < .0001). In comparison with initial reactions, subsequent reactions due to accidental ingestion were more severe, more common outside the home, and more likely to be treated with epinephrine. Conclusions: Allergic reactions to peanut and tree nut are frequently severe, often occur on the first known exposure, and can become more severe over time.

A randomized controlled trial of a moderate fat, low energy diet compared with a low fat, low energy diet for weight loss in overweight adults.

McManus, K., L. Antinoro, F. Sacks, 2001.  A randomized controlled trial of a moderate fat, low energy diet compared with a low fat, low energy diet for weight loss in overweight adults. Int J Obesity.25:1503-11.

CONTEXT: Long-term success in weight loss with dietary treatment has been elusive. OBJECTIVE: To evaluate a diet moderate in fat based on the Mediterranean diet compared to a standard low-fat diet for weight loss when both were controlled for energy. DESIGN: A randomized, prospective 18 month trial in a free-living population. PATIENTS: A total of 101 overweight men and women (26.5 – 46 kg/m2). INTERVENTION: (1) Moderate-fat diet (35% of energy); (2) low-fat diet (20% of energy). MAIN OUTCOME MEASUREMENTS: Change in body weight. RESULTS: After 18 months, 31/50 subjects in the moderate-fat group, and 30/51 in the low fat group were available for measurements. In the moderate-fat group, there were mean decreases in body weight of 4.1 kg, body mass index of 1.6 kg/m2, and waist circumference of 6.9 cm, compared to increases in the low-fat group of 2.9 kg, 1.4 kg/m2 and 2.6 cm, respectively; P ≤ 0.001 between the groups. The difference in weight change between the groups was 7.0 kg. (95% CI 5.3, 8.7). Only 20% (10/51) of those in the low-fat group were actively participating in the weight loss program after 18 months compared to 54% (27/50) in the moderate-fat group, (P <0.002). The moderate-fat diet group was continued for an additional year. The mean weight loss after 30 months compared to baseline was 3.5 kg (n=19, P=0.03). CONCLUSIONS: A moderate-fat, Mediterranean-style diet, controlled in energy, offers an alternative to a low-fat diet with superior long-term participation and adherence, with consequent improvements in weight loss.

U.S. consumption patterns of tree nuts.

Lin, B.H., E. Frazao, J. Allhouse, 2001.  U.S. consumption patterns of tree nuts. Food Review 24(2):54-8.

Americans are more than a little nutty when it comes to their diets. Recent USDA food consumption data show that about 1 in every 10 consumers eats tree nuts (almonds, walnuts, pecans, pistachios, cashews, and others) on any given day, and the amount eaten is fairly small. On average, slightly more than 1 gram of tree nuts are eaten per person per day. Tree nut consumption is higher among wealthier consumers and Whites in the United States. More adults age 40 and above eat tree nuts than younger consumers. A smaller proportion of consumers living in the South and in rural areas consume tree nuts than other consumers.