Gonzalez, C.A., J. Salas-Salvado’, 2006. The potential of nuts in the prevention of cancer. British Journal of Nutrition. 96, Suppl. 2, S87-S94.
Cancer is a disease that is characterized by the loss of genetic control over cell growth and proliferation, mainly as a result of the exposure to environmental factors. Cessation of smoking and a high consumption of fruits and vegetables are the most important means of reducing the risk of cancer in our society. Like fruits and vegetables, nuts are a source of vegetable protein, monounsaturated fatty acids, vitamin E, phenolic compounds, selenium, vegetable fiber, folic acid and phytoestrogens. There are numerous mechanisms of action by which these components can intervene in the prevention of cancer, although they have not been fully elucidated. There are very few epidemiological studies analyzing the relationship between nuts consumption and risk of cancer. One of the greatest difficulties in interpreting the results is that the consumption of nuts, seeds and legumes are often presented together. The most commonly studied location is the colon/rectum, an organ in which the effect of nuts is biologically plausible. Although the results are not conclusive, a protective effect on colon and rectum cancer is possible. Likewise, some studies show a possible protective effect on prostate cancer, but there is insufficient data on other tumor locations. New epidemiological studies are required to clarify the possible effects of nuts on cancer, particularly prospective studies that make reliable and complete estimations of their consumption and which make it possible to analyze their effects independently of the consumption of legumes and seeds.
Sampson H.A., 2005. Food allergy—accurately identifying clinical reactivity. Allergy. 60 (Suppl.79):19-24.
Up to 25% of adults believe that they or their children are afflicted with a food allergy. However, the actual prevalence of food allergy is much lower: approximately 6-8% of children suffer from food allergy during their first 3 years of life, and many children then develop clinical tolerance. Food allergy encompasses a whole spectrum of disorders, with symptoms that may be cutaneous, gastrointestinal or respiratory in nature. Food disorders also differ according to the extent that they are immunoglobulin E (IgE)-mediated. Skin-prick testing is often used to identify food sensitization, although double-blind, placebo-controlled food challenge (DBPCFC) tests remain the gold standard for diagnosis. Recent evidence suggests that quantitative IgE measurements can predict the outcome of DBPCFC tests and can replace about half of all oral food challenges. When an extensive medical history is obtained in combination with IgE quantification, even fewer patients may require formal food challenges. It has also become possible to map the IgE-binding regions of many major food allergens. This may help to identify children with persistent food allergy, as opposed to those who may develop clinical tolerance. In future, microarray technology may enable physicians to screen patients for a large number of food proteins and epitopes, using just a few drops of blood.
Phillips, K.M., D.M. Ruggio, M. Ashraf-Khorassani, 2005. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 53, 9436-9445.
Phytosterols were quantified in nuts and seeds commonly consumed in the United States. Total lipid extracts were subjected to acid hydrolysis and then alkaline saponfication, and free sterols were analyzed as trimethylsilyl derivatives by capillary GC-FID and GC-MS. Δ5-Avenasterol was quantified after alkaline saponification plus direct analysis of the glucoside. Sesame seed and wheat germ had the highest total phytosterol content (400-413 mg/100 g) and Brazil nuts the lowest (95 mg/100 g). Of the products typically consumed as snack foods, pistachio and sunflower kernels were richest in phytosterols (270-289 mg/100 g). β-Sitosterol, Δ5-avenasterol, and campesterol were predominant. Campestanol ranged from 1.0 to 12.7 mg/100 g. Only 13 mg/100 g β-sitosterol was found in pumpkin seed kernel, although total sterol content was high (265 mg/100 g). Phytosterol concentrations were greater than reported in existing food composition databases, probably due to the inclusion of steryl glycosides, which represent a significant portion of total sterols in nuts and seeds.
Chai, W., M. Liebman, 2005. Oxalate content of legumes, nuts and grain-based flours. Journal of Food Composition and Analysis. 18:723-29.
About 75% of all kidney stones are composed primarily of calcium oxalate and hyperoxaluria is a primary risk factor for this disorder. Since absorbed dietary oxalate can make a significant contribution to urinary oxalate levels, oxalate from legumes, nuts, and different types of grain-based flours was analyzed using both enzymatic and capillary electrophoresis (CE) methods. Total oxalate varied greatly among the legumes tested, ranging from 4 to 80 mg/100 g of cooked weight. The range of total oxalate of the nuts tested was 42-469 mg/100 g. Total oxalate of analyzed flours ranged from 37 to 269 mg/100 g. The overall data suggested that most legumes, nuts, and flours are rich sources of oxalate.
Mukuddem-Petersen, J., W. Oosthuizen, J. C. Jerling. 2005. A systematic review of the effects of nuts on blood lipid profiles in humans. J. Nutr. 135; 2082-2089.
The inverse association of nut consumption and risk markers of coronary heart disease (lipids) has sparked the interest of the scientific and lay community. The objective of this study was to conduct a systematic review to investigate the effects of nuts on the lipid profile. Medline and Web of Science databases were searched from the start of the database to August 2004 and supplemented by cross-checking reference lists of relevant publications. Human intervention trials with the objective of investigating independent effects of nuts on lipid concentrations were included. From the literature search, 415 publications were screened and 23 studies were included. These papers received a rating based upon the methodology as it appeared in the publication. No formal statistical analysis was performed due to the large differences in study designs of the dietary intervention trials. The results of 3 almond (50-100 g/d), 2 peanut (35-68 g/d), 1 pecan nut (72 g/d), and 4 walnut (40-84 g/d) studies showed decreases in total cholesterol between 2 and 16% and LDL cholesterol between 2 and 19% compared with subjects consuming control diets. Consumption of macadamia nuts (50-100 g/d) produced less convincing results. In conclusion, consumption of ~50-100 g (~1.5-3.5 servings) of nuts ≥5 times/wk as part of a heart healthy diet with total fat content (high in mono- and/or polyunsaturated fatty acids) of ~35% of energy may significantly decrease total cholesterol and LDL cholesterol in normo- and hyperlipidemic individuals.
Su, M., M. Venkatachalam, S.S. Teuber, K.H. Roux, S.K. Sathe, 2004. Impact of γ -irradiation and thermal processing on the antigenicity of almond, cashew nut and walnut proteins. J Sci Food Agric. 84:1119–1125.
Whole unprocessed almonds, cashew nuts and walnuts were each subjected to γ -irradiation (1, 5, 10 and 25 kGy) followed by heat processing including autoclaving (121°C, 15 psi for 15 and 30min), dry roasting (138 and 160°C for 30min each, 168 and 177°C for 12 min each), blanching (100°C for 5 and 10 min), oil roasting (191°C, 1min) and microwave heating (500W for 1 and 3 min). Rabbit polyclonal antibodies were raised against each major protein isolated from defatted, but not subjected to γ -irradiation and/or any thermal processing, almond, cashew nut and walnut flours. Immunoreactivity of almond, cashew nut and walnut proteins soluble in borate saline buffer, normalised to 1mg protein ml−1 for all samples, was determined by inhibition enzyme-linked immunosorbent assay (ELISA) and Western blotting. ELISAs and Western blotting experiments indicated that almond, cashew nut and walnut proteins exposed to γ -irradiation alone or followed by various thermal treatments remained antigenically stable.
Su, M., M. Venkatachalam, S.S. Teuber, K.H. Roux, S.K. Sathe, 2004. Impact of γ-irradiation and thermal processing on the antigenicity of almond, cashew nut and walnut proteins. J Sci Food Agric. 84:1119–1125.
Whole unprocessed almonds, cashew nuts and walnuts were each subjected to γ -irradiation (1, 5, 10 and 25 kGy) followed by heat processing including autoclaving (121°C, 15 psi for 15 and 30min), dry roasting (138 and 160°C for 30 min each, 168 and 177◦C for 12 min each), blanching (100°C for 5 and 10 min), oil roasting (191°C, 1min) and microwave heating (500W for 1 and 3min). Rabbit polyclonal antibodies were raised against each major protein isolated from defatted, but not subjected to γ -irradiation and/or any thermal processing, almond, cashew nut and walnut flours. Immunoreactivity of almond, cashew nut and walnut proteins soluble in borate saline buffer, normalised to 1mg protein ml−1 for all samples, was determined by inhibition enzyme-linked immunosorbent assay (ELISA) and Western blotting. ELISAs and Western blotting experiments indicated that almond, cashew nut and walnut proteins exposed to γ -irradiation alone or followed by various thermal treatments remained antigenically stable.
US Food and Drug Administration, Food Allergen Labeling and Consumer Protection Act of 2004, Title II of Public Law 108-282, http://www.cfsan.fda.gov/~dms/alrgact.html
Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E., R.L. Prior, 2004. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem. 52:4026-37.
Both lipophilic and hydrophilic antioxidant capacities were determined using the oxygen radical absorbance capacity (ORACFL) assay with fluorescein as the fluorescent probe and 2,2´-azobis(2-amidinopropane) dihydrochloride as a peroxyl radical generator on over 100 different kinds of foods, including fruits, vegetables, nuts, dried fruits, spices, cereals, infant, and other foods. Most of the foods were collected from four different regions and during two different seasons in U.S. markets. Total phenolics of each sample were also measured using the Folin-Ciocalteu reagent. Hydrophilic ORACFL values (H-ORACFL) ranged from 0.87 to 2641 μmol of Trolox equivalents (TE)/g among all of the foods, whereas lipophilic ORACFL values (L-ORACFL) ranged from 0.07 to 1611 μmol of TE/g. Generally, L-ORACFL values were <10% of the H-ORACFL values except for a very few samples. Total antioxidant capacity was calculated by combining L-ORACFL and H-ORACFL. Differences of ORACFL values in fruits and vegetables from different seasons and regions were relatively large for some foods but could not be analyzed in detail because of the sampling scheme. Two different processing methods, cooking and peeling, were used on selected foods to evaluate the impact of processing on ORACFL. The data demonstrated that processing can have significant effects on ORACFL. Considering all of the foods analyzed, the relationship between TP and H-ORACFL showed a very weak correlation. Total hydrophilic and lipophilic antioxidant capacity intakes were calculated to be 5558 and 166 μmol of TE/day, respectively, on the basis of data from the USDA Continuing Survey of Food Intakes by Individuals (1994-1996).
Gu, L., M.A. Kelm, J.F. Hammerstone, G. Beecher, J. Holden, D. Haytowitz, S. Gebhardt, R.L. Prior, 2004. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr. 134:613-17.
Proanthocyanidins (PAs) have been shown to have potential health benefits. However, no data exist concerning their dietary intake. Therefore, PAs in common and infant foods from the U.S. were analyzed. On the bases of our data and those from the USDA’s Continuing Survey of Food Intakes by Individuals (CSFII) of 1994-1996, the mean daily intake of PAs in the U.S. population (>2 y old) was estimated to be 57.7 mg/person. Monomers, dimers, trimers, and those above trimers contribute 7.1, 11.2, 7.8, and 73.9% of total PAs, respectively. The major sources of PAs in the American diet are apples (32.0%), followed by chocolate (17.9%) and grapes (17.8%). The 2- to 5-y-old age group (68.2 mg/person) and men >60 y old (70.8 mg/person) consume more PAs daily than other groups because they consume more fruit. The daily intake of PAs for 4- to 6-mo-old and 6- to 10-mo-old infants was estimated to be 1.3 mg and 26.9 mg, respectively, based on the recommendations of the American Academy of Pediatrics. This study supports the concept that PAs account for a major fraction of the total flavonoids ingested in Western diets.