Ros, E., 2015. Nuts and CVD. Br J Nutr. 113, S111–S120.
Nuts are nutrient-dense foods with complex matrices rich in unsaturated fatty acids and other bioactive compounds, such as l-arginine, fibre, healthful minerals, vitamin E, phytosterols and polyphenols. By virtue of their unique composition, nuts are likely to beneficially affect cardiovascular health. Epidemiological studies have associated nut consumption with a reduced incidence of CHD in both sexes and of diabetes in women, but not in men. Feeding trials have clearly demonstrated that consumption of all kinds of nuts has a cholesterol-lowering effect, even in the context of healthy diets. There is increasing evidence that nut consumption has a beneficial effect on oxidative stress, inflammation and vascular reactivity. Blood pressure, visceral adiposity and the metabolic syndrome also appear to be positively influenced by nut consumption. Contrary to expectations, epidemiological studies and clinical trials suggest that regular nut consumption is not associated with undue weight gain. Recently, the PREvención con DIeta MEDiterránea randomised clinical trial of long-term nutrition intervention in subjects at high cardiovascular risk provided first-class evidence that regular nut consumption is associated with a 50% reduction in incident diabetes and, more importantly, a 30% reduction in CVD. Of note, incident stroke was reduced by nearly 50% in participants allocated to a Mediterranean diet enriched with a daily serving of mixed nuts (15 g walnuts, 7·5 g almonds and 7·5 g hazelnuts). Thus, it is clear that frequent nut consumption has a beneficial effect on CVD risk that is likely to be mediated by salutary effects on intermediate risk factors.
O’Neil, C.E., V.L. Fulgoni, T.A. Nicklas, 2015. Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005–2010. Nutrition Journal. 14:64. DOI 10.1186/s12937-015-0052-x
Introduction: Previous research has shown inconsistencies in the association of tree nut consumption with risk factors for cardiovascular disease (CVD) and metabolic syndrome (MetS). Objective: To determine the association of tree nut consumption with risk factors for CVD and for MetS in adults. Methods: NHANES 2005–2010 data were used to examine the associations of tree nut consumption with health risks in adults 19+ years (n = 14,386; 51 % males). Tree nuts were: almonds, Brazil nuts, cashews, filberts [hazelnuts], macadamias, pecans, pine nuts, pistachios, and walnuts. Group definitions were non-consumers < ¼ ounce/day and consumers of ≥ ¼ ounce/day tree nuts using data from 24-h dietary recalls. Means and ANOVA (covariate adjusted) were determined using appropriate sample weights. Using logistic regression, odds ratios of being overweight (OW)/obese (OB) (body mass index [BMI] >25/<30 and ≥30, respectively) and having CVRF or MetS, were determined. Results: Tree nut consumption was associated with lower BMI (p = 0.004), waist circumference (WC) (p = 0.008), systolic blood pressure (BP) (p = 0.001), Homeostatic Model Assessment—Insulin Resistance (p = 0.043), and higher high density lipoprotein-cholesterol (p = 0.022), compared with no consumption, and a lower likelihood of OB (−25 %), OW/OB (−23 %), and elevated WC (−21 %). Conclusions: Tree nut consumption was associated with better weight status and some CVRF and MetS components.
Yang, M., F.B. Hu, E.L. Giovannucci, M.J. Stampfer, W.C. Willett, C.S. Fuchs, K. Wu, Y. Bao, 2015. Nut consumption and risk of colorectal cancer in women. European Journal of Clinical Nutrition. doi:10.1038/ejcn.2015.66.
Background/Objectives: Increasing nut consumption has been associated with reduced risk of obesity and type II diabetes, the risk factors for colorectal cancer. However, the association between nut consumption and colorectal cancer risk is unclear. We aimed to examine the association of long-term nut consumption with risk of colorectal cancer. Subjects/Methods: We prospectively followed 75 680 women who were free of cancer at baseline in the Nurses’ Health Study, and examined the association between nut consumption and colorectal cancer risk. Nut consumption was assessed at baseline and updated every 2–4 years. Relative risks (RRs) and 95% confidence intervals (95% CIs) were estimated using Cox proportional hazards models. Results: During 2 103 037 person-years of follow-up, we identified 1503 colorectal cancer cases. After adjustment for other known or suspected risk factors, women who consumed nuts 2 or more times per week (that is, 56 g per week) had a 13% lower risk of colorectal cancer compared with those who rarely consumed nuts, but the association was not statistically significant (RR: 0.87; 95%CI: 0.72–1.05; P-trend: 0.06). No association was observed for peanut butter. Conclusions: In this large prospective cohort of women, frequent nut consumption was not significantly associated with colorectal cancer risk after adjusting for other risk factors.
Mohammadifard, N., A. Salehi-Abargouei, J. Salas-Salvadó, M. Guasch-Ferré, K. Humphries, N. Sarrafzadegan, 2015. The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Clin Nutr. 101:966–82.
Background: Although several studies have assessed the effects of nut consumption (tree nuts, peanuts, and soy nuts) on blood pressure (BP), the results are conflicting. Objective: The aim was to conduct a systematic review and meta-analysis of published randomized controlled trials (RCTs) to estimate the effect of nut consumption on BP. Design: The databases MEDLINE, SCOPUS, ISI Web of Science, and Google Scholar were searched for RCTs carried out between 1958 and October 2013 that reported the effect of consuming single or mixed nuts (including walnuts, almonds, pistachios, cashews, hazelnuts, macadamia nuts, pecans, peanuts, and soy nuts) on systolic BP (SBP) or diastolic BP (DBP) as primary or secondary outcomes in adult populations aged $18 y. Relevant articles were identified by screening the abstracts and titles and the full text. Studies that evaluated the effects for, 2 wk or in which the control group ingested different healthy oils were excluded. Mean 6 SD changes in SBP and DBP in each treatment group were recorded for meta-analysis. Results: Twenty-one RCTs met the inclusion criteria. Our findings suggest that nut consumption leads to a significant reduction in SBP in participants without type 2 diabetes [mean difference (MD): 21.29; 95% CI: 22.35, 20.22; P = 0.02] but not in the total population. Subgroup analyses of different nut types suggest that pistachios, but not other nuts, significantly reduce SBP (MD: 21.82; 95% CI: 22.97, 20.67; P = 0.002). Our study suggests that pistachios (MD: 20.80; 95% CI: 21.43, 20.17; P = 0.01) and mixed nuts (MD: 21.19; 95% CI: 22.35, 20.03; P = 0.04) have a significant reducing effect on DBP. We found no significant changes in DBP after the consumption of other nuts. Conclusions: Total nut consumption lowered SBP in participants without type 2 diabetes. Pistachios seemed to have the strongest effect on reducing SBP and DBP. Mixed nuts also reduced DBP.