Crespo, J.F., J.M. James, C. Fernandez-Rodriguez, J. Rodriguez, 2006. Food allergy: nuts and tree nuts. British Journal of Nutrition. 96, Suppl. 2, S95-S102.
Nuts are a well-defined cause of food allergy, which affect approximately 1% of the general population in the UK and the USA. There do appear to be differences in the frequency of nut allergy between different countries because of different dietary habits and cooking procedures. For example, in the USA and France, peanuts are one of the most frequent causes of food allergy, but in other countries, it seems to be less common. Genetic factors, in particular, appear to play a role in the development of peanut allergy. While the majority of nut allergens are seed storage proteins, other nut allergens are profilins and pathogenesis-related protein homologues, considered as panallergens because of their widespread distribution in plants. The presence of specific IgE antibodies to several nuts is a common clinical finding, but the clinical relevance of this cross-reactivity is usually limited. Allergic reactions to nuts appear to be particularly severe, sometimes even life-threatening, and fatal reactions following their ingestion have been documented. Food allergy is diagnosed by identifying an underlying immunological mechanism (i.e. allergic testing), and establishing a causal relationship between food ingestion and symptoms (i.e. oral challenges). In natural history investigations carried out in peanut-allergic children, approximately 20% of the cases outgrew their allergy or developed oral tolerance. The treatment of nut allergies should include patient and family education about avoiding all presentations of the food and the potential for a severe reaction caused by accidental ingestion. Patients and families should be instructed how to recognize early symptoms of an allergic reaction and how to treat severe anaphylaxis promptl
Brufau, G., J. Boatella, M. Rafecas, 2006. Nuts: source of energy and macronutrients. British Journal of Nutrition. 96, Suppl. 2, S24-S28.
On the basis of the high fat content of nuts, they are traditionally considered as foods that provide a high amount of energy. However, epidemiologic and clinical observations do not indicate an association between nut intake and increased BMI. There is a notorious variability in macronutrient composition among nuts, although they have some consistent patterns. Nuts contain all major macronutrients: protein, carbohydrate, and fat. The total protein content is relatively high, which makes them a good source of plant protein (especially for vegetarians). Although nuts contain low amounts of some essential amino acids, this is not a nutritional concern due to the complement of protein. In addition, nuts have a low lysine:arginine ratio, which is inversely associated with the risk of developing hypercholesterolemia and atherosclerosis. Carbohydrates are the second highest macronutrient in nuts in terms of total calories provided. The fat fraction is characterized by a high amount of unsaturated fatty acids and a low content of saturated fatty acids. In conclusion, the high content in unsaturated fatty acids, the low lysine:arginine ratio, and the presence of other bioactive molecules (such as fiber, phytosterols, vitamin and other antioxidants, and minerals) make the addition of nuts to healthy diets a useful tool for the prevention of cardiovascular heart diseases.
Ros, E., J. Mataix, 2006. Fatty acid composition of nuts – implications for cardiovascular health. British Journal of Nutrition. 96, Suppl. 2, S29-S35.
It is well established that, due to their high content of saturated fatty acids (SFA), the intake of meat and meat products is strongly associated with elevated blood cholesterol concentrations and an increased risk of hypertension, diabetes and cardiovascular diseases. Conversely, the intake of foods rich in unsaturated fatty acids, such as those contained in most vegetable fats and oils and oily fish, is associated with improved lipid profiles, a lower potency of intermediate biomarkers of atherosclerosis and lesser incidence of cardiovascular diseases. There are persuasive evidences that dietary substitution of monounsaturated fatty acids (MUFA) or n-6 polyunsaturated fatty acids (PUFA) for SFA lowers blood cholesterol and may have beneficial effects on inflammation, thrombosis, and vascular reactivity. MUFA may have an advantage over PUFA because enrichment of lipoprotein lipids with MUFA increases their resistance to oxidation. Marine n-3 PUFA have a number of anti-atherosclerotic effects, including anti-arrhythmic properties and, at relatively high doses, reduce serum triglycerides. These effects appear to be shared in part by vegetable n-3 PUFA. Nuts are natural foods rich in unsaturated fatty acids; most nuts contain substantial amounts of MUFA, while walnuts are especially rich in both n-6 and n-3 PUFA. Healthy fats in nuts contribute to the beneficial effects of frequent nut intake observed in epidemiological studies (prevention of coronary heart disease, diabetes, and sudden death) and in short-term feeding trials (cholesterol lowering, LDL resistance to oxidation, and improved endothelial function).
Griel, A.E., P.M. Kris-Etherton, 2006. Tree nuts and the lipid profile: a review of clinical studies. British Journal of Nutrition. 96, Suppl. 2, S68-S78
Tree nuts have a fatty acid profile that favorably affects blood lipids and lipoproteins. They are low in saturated fat and high in unsaturated fatty acids and are rich sources of other nutrients. An extensive database consistently shows total and LDL cholesterol-lowering effects of diets low in saturated fat and cholesterol and high in unsaturated fat provided by a variety of tree nuts. Collectively, a summary of studies conducted to date shows that tree nuts reduce LDL cholesterol by 3-19% compared with Western and lower-fat diets. Nuts also contain many nutrients and bioactive compounds that appear to contribute to the favorable effects on lipids and lipoproteins – these include plant sterols, dietary fiber and antioxidants. Because of their unique nutrient profile, nuts can be part of a diet that features multiple heart-healthy foods resulting in a cholesterol lowering response that surpasses that of cholesterol-lowering diets typically used to reduce CVD risk.
Gonzalez, C.A., J. Salas-Salvado’, 2006. The potential of nuts in the prevention of cancer. British Journal of Nutrition. 96, Suppl. 2, S87-S94.
Cancer is a disease that is characterized by the loss of genetic control over cell growth and proliferation, mainly as a result of the exposure to environmental factors. Cessation of smoking and a high consumption of fruits and vegetables are the most important means of reducing the risk of cancer in our society. Like fruits and vegetables, nuts are a source of vegetable protein, monounsaturated fatty acids, vitamin E, phenolic compounds, selenium, vegetable fiber, folic acid and phytoestrogens. There are numerous mechanisms of action by which these components can intervene in the prevention of cancer, although they have not been fully elucidated. There are very few epidemiological studies analyzing the relationship between nuts consumption and risk of cancer. One of the greatest difficulties in interpreting the results is that the consumption of nuts, seeds and legumes are often presented together. The most commonly studied location is the colon/rectum, an organ in which the effect of nuts is biologically plausible. Although the results are not conclusive, a protective effect on colon and rectum cancer is possible. Likewise, some studies show a possible protective effect on prostate cancer, but there is insufficient data on other tumor locations. New epidemiological studies are required to clarify the possible effects of nuts on cancer, particularly prospective studies that make reliable and complete estimations of their consumption and which make it possible to analyze their effects independently of the consumption of legumes and seeds.
Sampson H.A., 2005. Food allergy—accurately identifying clinical reactivity. Allergy. 60 (Suppl.79):19-24.
Up to 25% of adults believe that they or their children are afflicted with a food allergy. However, the actual prevalence of food allergy is much lower: approximately 6-8% of children suffer from food allergy during their first 3 years of life, and many children then develop clinical tolerance. Food allergy encompasses a whole spectrum of disorders, with symptoms that may be cutaneous, gastrointestinal or respiratory in nature. Food disorders also differ according to the extent that they are immunoglobulin E (IgE)-mediated. Skin-prick testing is often used to identify food sensitization, although double-blind, placebo-controlled food challenge (DBPCFC) tests remain the gold standard for diagnosis. Recent evidence suggests that quantitative IgE measurements can predict the outcome of DBPCFC tests and can replace about half of all oral food challenges. When an extensive medical history is obtained in combination with IgE quantification, even fewer patients may require formal food challenges. It has also become possible to map the IgE-binding regions of many major food allergens. This may help to identify children with persistent food allergy, as opposed to those who may develop clinical tolerance. In future, microarray technology may enable physicians to screen patients for a large number of food proteins and epitopes, using just a few drops of blood.
Phillips, K.M., D.M. Ruggio, M. Ashraf-Khorassani, 2005. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 53, 9436-9445.
Phytosterols were quantified in nuts and seeds commonly consumed in the United States. Total lipid extracts were subjected to acid hydrolysis and then alkaline saponfication, and free sterols were analyzed as trimethylsilyl derivatives by capillary GC-FID and GC-MS. Δ5-Avenasterol was quantified after alkaline saponification plus direct analysis of the glucoside. Sesame seed and wheat germ had the highest total phytosterol content (400-413 mg/100 g) and Brazil nuts the lowest (95 mg/100 g). Of the products typically consumed as snack foods, pistachio and sunflower kernels were richest in phytosterols (270-289 mg/100 g). β-Sitosterol, Δ5-avenasterol, and campesterol were predominant. Campestanol ranged from 1.0 to 12.7 mg/100 g. Only 13 mg/100 g β-sitosterol was found in pumpkin seed kernel, although total sterol content was high (265 mg/100 g). Phytosterol concentrations were greater than reported in existing food composition databases, probably due to the inclusion of steryl glycosides, which represent a significant portion of total sterols in nuts and seeds.
Chai, W., M. Liebman, 2005. Oxalate content of legumes, nuts and grain-based flours. Journal of Food Composition and Analysis. 18:723-29.
About 75% of all kidney stones are composed primarily of calcium oxalate and hyperoxaluria is a primary risk factor for this disorder. Since absorbed dietary oxalate can make a significant contribution to urinary oxalate levels, oxalate from legumes, nuts, and different types of grain-based flours was analyzed using both enzymatic and capillary electrophoresis (CE) methods. Total oxalate varied greatly among the legumes tested, ranging from 4 to 80 mg/100 g of cooked weight. The range of total oxalate of the nuts tested was 42-469 mg/100 g. Total oxalate of analyzed flours ranged from 37 to 269 mg/100 g. The overall data suggested that most legumes, nuts, and flours are rich sources of oxalate.
Nash, S.D., M. Westpfal, 2005. Cardiovascular benefits of nuts. American Journal of Cardiology. 963-65.
This review article highlights some of the cardiovascular benefits of nuts. The authors conclude by writing, “Simply stated, at a time of spiraling costs for medical care, public and professional concerns about drug safety, and in an age of fad diets, it is reassuring to have a “nutty alternative.”
Mukuddem-Petersen, J., W. Oosthuizen, J. C. Jerling. 2005. A systematic review of the effects of nuts on blood lipid profiles in humans. J. Nutr. 135; 2082-2089.
The inverse association of nut consumption and risk markers of coronary heart disease (lipids) has sparked the interest of the scientific and lay community. The objective of this study was to conduct a systematic review to investigate the effects of nuts on the lipid profile. Medline and Web of Science databases were searched from the start of the database to August 2004 and supplemented by cross-checking reference lists of relevant publications. Human intervention trials with the objective of investigating independent effects of nuts on lipid concentrations were included. From the literature search, 415 publications were screened and 23 studies were included. These papers received a rating based upon the methodology as it appeared in the publication. No formal statistical analysis was performed due to the large differences in study designs of the dietary intervention trials. The results of 3 almond (50-100 g/d), 2 peanut (35-68 g/d), 1 pecan nut (72 g/d), and 4 walnut (40-84 g/d) studies showed decreases in total cholesterol between 2 and 16% and LDL cholesterol between 2 and 19% compared with subjects consuming control diets. Consumption of macadamia nuts (50-100 g/d) produced less convincing results. In conclusion, consumption of ~50-100 g (~1.5-3.5 servings) of nuts ≥5 times/wk as part of a heart healthy diet with total fat content (high in mono- and/or polyunsaturated fatty acids) of ~35% of energy may significantly decrease total cholesterol and LDL cholesterol in normo- and hyperlipidemic individuals.