Archive

Effect of nuts on gastrointestinal health. 

Mandalari, G., T. Gervasi, D.W. Rosenberg, K.G. Lapsley, D.J. Baer, 2023. Effect of nuts on gastrointestinal health. Nutrients. 15(7):1733. https://doi.org/10.3390/nu15071733

Nuts are high nutrient-dense foods containing healthy lipids, dietary fiber, and bioactive phytochemicals, including vitamins and minerals. Although the beneficial effect of nut consumption on different chronic diseases has been well documented, especially in relation to their cardiometabolic benefits, less scientific evidence is available on their possible beneficial effects on gastrointestinal health. In this narrative review, we summarize the most important findings and new research perspectives in relation to the importance of nut consumption on gastrointestinal health. The integrity of the cell wall structure, cell size and particle size after mastication are known to play a crucial role in energy, nutrient and bioactive release from nuts during digestion, therefore affecting bioaccessibility. Other mechanisms, such as cell wall composition, thickness and porosity, as well as stability of the membranes surrounding the oil bodies within the cell, are also important for energy extraction. As the undigested nutrients and phytochemicals are delivered to the colon, effects on gut microbiota composition are predicted. Although the overall effect of nut consumption on microbial alpha- and beta-diversity has been inconsistent, some scientific evidence suggests an increase in fecal butyrate after almond consumption, and a beneficial role of walnuts on the prevention of ulcerative colitis and protection against the development of gastric mucosal lesions.

Long-term consumption of nuts (including peanuts, peanut butter, walnuts, and other nuts) in relation to risk of frailty in older women: evidence from a cohort study.

Wang, R., M.T. Hannan, M. Wang, A.W. Schwartz, E. Lopez-Garcia, F. Grodstein, 2023. Long-term consumption of nuts (including peanuts, peanut butter, walnuts, and other nuts) in relation to risk of frailty in older women: evidence from a cohort study. J. Nutr. 153(3): 820–827.

Background: Adherence to a healthy diet is inversely associated with frailty. However, the relationship between nuts, a key food group of Mediterranean diet, and frailty is unclear. Objectives: This study aimed to evaluate the association between nut consumption and frailty in an aging female population. Methods: This population-based observational study included nonfrail women (60 y old) in the NHS from 11 states of the United States.

Outcome was incident frailty, defined as having 3 of the FRAIL components (fatigue, lower strength, reduced aerobic capacity, multiple chronic conditions, and significant weight loss) and assessed every 4 y from 1992 to 2016. From 1990 to 2014, FFQs were used to assess the intakes of peanuts, peanut butter, walnuts (added in 1998), and other nuts at 4-y intervals. Exposure was total nut consumption, calculated as the sum of intakes of peanuts, peanut butter, walnuts, and other nuts and categorized into <1 serving/mo, 1–3 servings/mo, 1 serving/wk, 2 4 servings/wk, and 5 servings/wk. The relations of intakes of peanuts, peanut butter, and walnuts with frailty were also investigated separately. Cox proportional hazards models were used to assess the associations between nut consumption and frailty after adjusting for age, smoking, BMI, EI, diet quality, and medication use. Results: Among 71,704 participants, 14,195 incident frailty cases occurred over 1,165,290 person-years. The adjusted HR (95% CI) for consuming 5 servings/wk of nuts was 0.80 (0.73, 0.87), as compared with <1 serving/mo. Higher intakes of peanuts and walnuts, but not peanut butter, were also inversely associated with frailty. Conclusions: This large prospective cohort study showed a strong and consistent inverse association between regular nut consumption and incident frailty. This suggests that nut consumption should be further tested as a convenient public health intervention for the preservation of health and well-being in older adults.

Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males.

Gu, X., J.-P. Drouin-Chartier, F.M. Sacks, F.B. Hu, B. Rosner, W.C. Willett, 2023. Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males. Amer J Clin Nutr. doi.org/10.1016/j.ajcnut.2023.08.021

Background: Studies with methodological advancements are warranted to confirm the relation of red meat consumption to the incidence of type 2 diabetes (T2D). Objective: We aimed to assess the relationships of intakes of total, processed, and unprocessed red meat to risk of T2D and to estimate the effects of substituting different protein sources for red meats on T2D risk. Methods: Our study included 216,695 participants (81% females) from the Nurses’ Health Study (NHS), NHS II, and Health Professionals Follow-up Study (HPFS). Red meat intakes were assessed with semiquantitative food frequency questionnaires (FFQs) every 2 to 4 y since the study baselines. We used multivariable-adjusted proportional hazards models to estimate the associations between red meats and T2D. Results: Over 5,483,981 person-years of follow-up, we documented 22,761 T2D cases. Intakes of total, processed, and unprocessed red meat were positively and approximately linearly associated with higher risks of T2D. Comparing the highest to the lowest quintiles, hazard ratios (HR) were 1.62 (95% confidence interval [CI]: 1.53, 1.71) for total red meat, 1.51 (95% CI: 1.44, 1.58) for processed red meat, and 1.40 (95% CI: 1.33, 1.47) for

unprocessed red meat. The percentage lower risk of T2D associated with substituting 1 serving/d of nuts and legumes for total red meat was 30% (HR ¼ 0.70, 95% CI: 0.66, 0.74), for processed red meat was 41% (HR ¼ 0.59, 95% CI: 0.55, 0.64), and for unprocessed red meat was 29% (HR ¼ 0.71, 95% CI: 0.67, 0.75); Substituting 1 serving/d of dairy for total, processed, or  unprocessed red meat was also associated with significantly lower risk of T2D. The observed associations became stronger after we calibrated dietary intakes to intakes assessed by weighed diet records. Conclusions: Our study supports current dietary recommendations for limiting consumption of red meat intake and emphasizes the importance of different alternative sources of protein for T2D prevention.

Long-term consumption of nuts (including peanuts, peanut butter, walnuts, and other nuts) in relation to risk of frailty in older women: evidence from a cohort study.

Wang, R., M.T. Hannan, M. Wang, A.W. Schwartz, E. Lopez-Garcia, F. Grodstein, 2023. Long-term consumption of nuts (including peanuts, peanut butter, walnuts, and other nuts) in relation to risk of frailty in older women: evidence from a cohort study. J Nutr. 153(3):820-7. https://doi.org/10.1016/j.tjnut.2023.01.003

Background: Adherence to a healthy diet is inversely associated with frailty. However, the relationship between nuts, a key food group of Mediterranean diet, and frailty is unclear. Objectives: This study aimed to evaluate the association between nut consumption and frailty in an aging female population. Methods: This population-based observational study included nonfrail women (60 y old) in the NHS from 11 states of the United States. Outcome was incident frailty, defined as having 3 of the FRAIL components (fatigue, lower strength, reduced aerobic capacity, multiple chronic conditions, and significant weight loss) and assessed every 4 y from 1992 to 2016. From 1990 to 2014, FFQs were used to assess the intakes of peanuts, peanut butter, walnuts (added in 1998), and other nuts at 4-y intervals. Exposure was total nut consumption, calculated as the sum of intakes of peanuts, peanut butter, walnuts, and other nuts and categorized into <1 serving/mo, 1-3 servings/mo, 1 serving/wk, 2-4 servings/wk, and ≥ 5 servings/wk. The relations of intakes of peanuts, peanut butter, and walnuts with frailty were also investigated separately. Cox proportional hazards models were used to assess the associations between nut consumption and frailty after adjusting for age, smoking, BMI, EI, diet quality, and medication use. Results: Among 71,704 participants, 14,195 incident frailty cases occurred over 1,165,290 person-years. The adjusted HR (95% CI) for consuming ≥ 5 servings/wk of nuts was 0.80 (0.73, 0.87), as compared with <1 serving/mo. Higher intakes of peanuts and walnuts, but not peanut butter, were also inversely associated with frailty. Conclusions: This large prospective cohort study showed a strong and consistent inverse association between regular nut consumption and incident frailty. This suggests that nut consumption should be further tested as a convenient public health intervention for the preservation of health and well-being in older adults.