Archive

Nuts, body weight and insulin resistance

Rajaram, S., J. Sabate’, 2006. Nuts, body weight and insulin resistance. British Journal of Nutrition. 96, Suppl. 2, S79-S86.

Traditionally, nuts have been considered a staple food, but because of their high energy and fat content are not considered good for body weight control or insulin sensitivity. Frequent consumption of nuts reduces the risk of coronary artery disease and type-2 diabetes and nut-enriched diets favorably alter blood lipids in normal and hypercholesterolemic individuals under controlled and free-living dietary conditions. However, whether or not frequent consumption of nuts can cause weight gain and impair insulin sensitivity is not fully understood. Review of the available data to date suggests that adding nuts to habitual diets of free-living individuals does not cause weight gain. In fact, nuts have a tendency to lower body weight and fat mass. In the context of calorie-restricted diets, adding nuts produces a more lasting and greater magnitude of weight loss among obese subjects while improving insulin sensitivity. Further studies are needed to clarify the effect of long-term ($ year) consumption of nuts on body weight and their role in altering insulin sensitivity both in normal and type-2 diabetics. In the meantime, there is sufficient evidence to promote the inclusion of nuts as part of healthy diets.

Food allergy: nuts and tree nuts

Crespo, J.F., J.M. James, C. Fernandez-Rodriguez, J. Rodriguez, 2006. Food allergy: nuts and tree nuts. British Journal of Nutrition. 96, Suppl. 2, S95-S102.

Nuts are a well-defined cause of food allergy, which affect approximately 1% of the general population in the UK and the USA. There do appear to be differences in the frequency of nut allergy between different countries because of different dietary habits and cooking procedures. For example, in the USA and France, peanuts are one of the most frequent causes of food allergy, but in other countries, it seems to be less common. Genetic factors, in particular, appear to play a role in the development of peanut allergy. While the majority of nut allergens are seed storage proteins, other nut allergens are profilins and pathogenesis-related protein homologues, considered as panallergens because of their widespread distribution in plants. The presence of specific IgE antibodies to several nuts is a common clinical finding, but the clinical relevance of this cross-reactivity is usually limited. Allergic reactions to nuts appear to be particularly severe, sometimes even life-threatening, and fatal reactions following their ingestion have been documented. Food allergy is diagnosed by identifying an underlying immunological mechanism (i.e. allergic testing), and establishing a causal relationship between food ingestion and symptoms (i.e. oral challenges). In natural history investigations carried out in peanut-allergic children, approximately 20% of the cases outgrew their allergy or developed oral tolerance. The treatment of nut allergies should include patient and family education about avoiding all presentations of the food and the potential for a severe reaction caused by accidental ingestion. Patients and families should be instructed how to recognize early symptoms of an allergic reaction and how to treat severe anaphylaxis promptl

Qualified health claim for nuts and heart disease prevention, development of consumer-friendly language

Ternus, M., K. Lapsley, K. McMahon, G. Johnson, 2006. Qualified health claim for nuts and heart disease prevention, development of consumer-friendly language. Nutrition Today. 41(2):62-66.

In 2003, the US Food and Drug Administration (FDA) began authorizing qualified health claims for conventional foods. Although the FDA had developed generic qualifying language for these claims, the language had not yet been tested with consumers. A shopping mall intercept was conducted among a random sample of 408 adults. The research tested consumer preference, understanding and believability, and impact on nut consumption of 4 variations of the ‘‘B’’ level qualified health claim for nuts and heart disease. The FDA generic language was used as the control. The results show that one of the alternatives was ranked significantly higher than the FDA generic claim for clarity and understandability but was similar in all other categories, including the scientific uncertainty associated with the claim. This research demonstrates that it is possible to meet FDA’s standards for truthful and not misleading health claims using consumer-friendly language.

A pecan-enriched diet increases γ-tocopherol/cholesterol and decreases thiobarbituric acid reactive substances in plasma of adults

Haddad, E., P. Jambazian, M. Karunia, J. Tanzman, J. Sabaté, 2006.  A pecan-enriched diet increases γ-tocopherol/cholesterol and decreases thiobarbituric acid reactive substances in plasma of adults. Nutrition Research. 26:397-402.

Consumption of nuts is associated with a reduced risk of coronary heart disease, and dietary intervention studies incorporating pecans show improved lipid profiles. The unsaturated fats in pecans are protected against oxidation by the high concentrations of γ-tocopherol and polymeric flavanols. The aim of this study was to determine whether plasma concentrations of tocopherols and measures of antioxidant capacity and of oxidative stress are affected by incorporation of pecans in the diet. In a randomized, controlled, crossover feeding study, 24 subjects were assigned to 2 diets, each for 4 weeks: a control diet and a pecan-enriched (20% of energy) diet. Cholesterol-adjusted plasma γ-tocopherol increased by 10.1% ( P < .001), a-tocopherol decreased by 4.6% ( P < .001), and malondialdehyde concentrations measured as thiobarbituric acid reactive substances decreased by 7.4% (P < .05) on the pecan diet. No changes were observed for ferric-reducing ability of plasma or Trolox equivalent antioxidant capacity values. These data provide some evidence for potential protective effects of pecan consumption in healthy individual

Nuts: source of energy and macronutrients

Brufau, G., J. Boatella, M. Rafecas, 2006. Nuts: source of energy and macronutrients. British Journal of Nutrition. 96, Suppl. 2, S24-S28.

On the basis of the high fat content of nuts, they are traditionally considered as foods that provide a high amount of energy. However, epidemiologic and clinical observations do not indicate an association between nut intake and increased BMI. There is a notorious variability in macronutrient composition among nuts, although they have some consistent patterns. Nuts contain all major macronutrients: protein, carbohydrate, and fat. The total protein content is relatively high, which makes them a good source of plant protein (especially for vegetarians). Although nuts contain low amounts of some essential amino acids, this is not a nutritional concern due to the complement of protein. In addition, nuts have a low lysine:arginine ratio, which is inversely associated with the risk of developing hypercholesterolemia and atherosclerosis. Carbohydrates are the second highest macronutrient in nuts in terms of total calories provided. The fat fraction is characterized by a high amount of unsaturated fatty acids and a low content of saturated fatty acids. In conclusion, the high content in unsaturated fatty acids, the low lysine:arginine ratio, and the presence of other bioactive molecules (such as fiber, phytosterols, vitamin and other antioxidants, and minerals) make the addition of nuts to healthy diets a useful tool for the prevention of cardiovascular heart diseases.

Fatty acid composition of nuts – implications for cardiovascular health

Ros, E., J. Mataix, 2006. Fatty acid composition of nuts – implications for cardiovascular health. British Journal of Nutrition. 96, Suppl. 2, S29-S35.

It is well established that, due to their high content of saturated fatty acids (SFA), the intake of meat and meat products is strongly associated with elevated blood cholesterol concentrations and an increased risk of hypertension, diabetes and cardiovascular diseases. Conversely, the intake of foods rich in unsaturated fatty acids, such as those contained in most vegetable fats and oils and oily fish, is associated with improved lipid profiles, a lower potency of intermediate biomarkers of atherosclerosis and lesser incidence of cardiovascular diseases. There are persuasive evidences that dietary substitution of monounsaturated fatty acids (MUFA) or n-6 polyunsaturated fatty acids (PUFA) for SFA lowers blood cholesterol and may have beneficial effects on inflammation, thrombosis, and vascular reactivity. MUFA may have an advantage over PUFA because enrichment of lipoprotein lipids with MUFA increases their resistance to oxidation. Marine n-3 PUFA have a number of anti-atherosclerotic effects, including anti-arrhythmic properties and, at relatively high doses, reduce serum triglycerides. These effects appear to be shared in part by vegetable n-3 PUFA. Nuts are natural foods rich in unsaturated fatty acids; most nuts contain substantial amounts of MUFA, while walnuts are especially rich in both n-6 and n-3 PUFA. Healthy fats in nuts contribute to the beneficial effects of frequent nut intake observed in epidemiological studies (prevention of coronary heart disease, diabetes, and sudden death) and in short-term feeding trials (cholesterol lowering, LDL resistance to oxidation, and improved endothelial function).

Tree nuts and the lipid profile: a review of clinical studies

Griel, A.E., P.M. Kris-Etherton, 2006. Tree nuts and the lipid profile: a review of clinical studies. British Journal of Nutrition. 96, Suppl. 2, S68-S78

Tree nuts have a fatty acid profile that favorably affects blood lipids and lipoproteins. They are low in saturated fat and high in unsaturated fatty acids and are rich sources of other nutrients. An extensive database consistently shows total and LDL cholesterol-lowering effects of diets low in saturated fat and cholesterol and high in unsaturated fat provided by a variety of tree nuts. Collectively, a summary of studies conducted to date shows that tree nuts reduce LDL cholesterol by 3-19% compared with Western and lower-fat diets. Nuts also contain many nutrients and bioactive compounds that appear to contribute to the favorable effects on lipids and lipoproteins – these include plant sterols, dietary fiber and antioxidants. Because of their unique nutrient profile, nuts can be part of a diet that features multiple heart-healthy foods resulting in a cholesterol lowering response that surpasses that of cholesterol-lowering diets typically used to reduce CVD risk.

The potential of nuts in the prevention of cancer

Gonzalez, C.A., J. Salas-Salvado’, 2006. The potential of nuts in the prevention of cancer. British Journal of Nutrition. 96, Suppl. 2, S87-S94.

Cancer is a disease that is characterized by the loss of genetic control over cell growth and proliferation, mainly as a result of the exposure to environmental factors. Cessation of smoking and a high consumption of fruits and vegetables are the most important means of reducing the risk of cancer in our society. Like fruits and vegetables, nuts are a source of vegetable protein, monounsaturated fatty acids, vitamin E, phenolic compounds, selenium, vegetable fiber, folic acid and phytoestrogens. There are numerous mechanisms of action by which these components can intervene in the prevention of cancer, although they have not been fully elucidated. There are very few epidemiological studies analyzing the relationship between nuts consumption and risk of cancer. One of the greatest difficulties in interpreting the results is that the consumption of nuts, seeds and legumes are often presented together. The most commonly studied location is the colon/rectum, an organ in which the effect of nuts is biologically plausible. Although the results are not conclusive, a protective effect on colon and rectum cancer is possible. Likewise, some studies show a possible protective effect on prostate cancer, but there is insufficient data on other tumor locations. New epidemiological studies are required to clarify the possible effects of nuts on cancer, particularly prospective studies that make reliable and complete estimations of their consumption and which make it possible to analyze their effects independently of the consumption of legumes and seeds.

Health benefits of nuts: Potential role of antioxidants.

Blomhoff, R., M.H. Carlsen, L.F. Andersen, D.R. Jacobs Jr, 2006. Health benefits of nuts: potential role of antioxidants. British Journal of Nutrition. 96, Suppl. 2, S52-S60.

A diet rich in fruits, vegetables and minimally refined cereals is associated with lower risk for chronic degenerative diseases. Since oxidative stress is common in chronic degenerative disease, it has been assumed that dietary antioxidants may explain this protective effect. Every dietary plant contains numerous types of antioxidants with different properties. Many of these antioxidants cooperate in oxidative stress reduction in plants, and we hypothesize that many different antioxidants may also be needed for the proper protection of animal cells. To test this hypothesis, it is useful to identify dietary plants with high total antioxidant content. Several nuts are among the dietary plants with the highest content of total antioxidants. Of the tree nuts, walnuts, pecans and chestnuts have the highest contents of antioxidants. Walnuts contain more than 20 mmol antioxidants per 100 g, mostly in the walnut pellicles. Peanuts (a legume) also contribute significantly to dietary intake of antioxidants. These data are in accordance with our present extended analysis of an earlier report on nut intake and death attributed to various diseases in the Iowa Women’s Health Study. We observed that the hazard ratio for total death rates showed a U-shaped association with nut/peanut butter consumption. Hazard ratio was 0.89 (CI= 0.81-0.97) and 0.81 (CI= 0.75-0.88) for nut/peanut butter intake once per week and 1-4 times per week, respectively. Death attributed to cardiovascular and coronary heart diseases showed strong and consistent reductions with increasing nut/peanut butter consumption. Further studies are needed to clarify whether antioxidants contribute to this apparent beneficial health effect of nut

Food allergy—accurately identifying clinical reactivity

Sampson H.A., 2005. Food allergy—accurately identifying clinical reactivity. Allergy. 60 (Suppl.79):19-24.

Up to 25% of adults believe that they or their children are afflicted with a food allergy. However, the actual prevalence of food allergy is much lower: approximately 6-8% of children suffer from food allergy during their first 3 years of life, and many children then develop clinical tolerance. Food allergy encompasses a whole spectrum of disorders, with symptoms that may be cutaneous, gastrointestinal or respiratory in nature. Food disorders also differ according to the extent that they are immunoglobulin E (IgE)-mediated. Skin-prick testing is often used to identify food sensitization, although double-blind, placebo-controlled food challenge (DBPCFC) tests remain the gold standard for diagnosis. Recent evidence suggests that quantitative IgE measurements can predict the outcome of DBPCFC tests and can replace about half of all oral food challenges. When an extensive medical history is obtained in combination with IgE quantification, even fewer patients may require formal food challenges. It has also become possible to map the IgE-binding regions of many major food allergens. This may help to identify children with persistent food allergy, as opposed to those who may develop clinical tolerance. In future, microarray technology may enable physicians to screen patients for a large number of food proteins and epitopes, using just a few drops of blood.