Archive

Comparative effects of different types of tree nut consumption on blood lipids: a network meta-analysis of clinical trials.

Liu, K., S. Hui, B. Wang, K. Kaliannan, X. Guo, L. Liang, 2020. Comparative effects of different types of tree nut consumption on blood lipids: a network meta-analysis of clinical trials. Am J Clin Nutr. 111(1):219-227.

BackgroundRecent evidence has confirmed that nuts are one of the best food groups at reducing LDL cholesterol and total cholesterol (TC). However, the comparative effects of different types of nuts on blood lipids are unclear. Objectives: This network meta-analysis of randomized clinical trials aimed to assess the comparative effects of walnuts, pistachios, hazelnuts, cashews, and almonds on typical lipid profiles. Methods: We conducted literature searches to identify studies comparing ≥2 of the following diets-walnut-enriched, pistachio-enriched, hazelnut-enriched, cashew-enriched, almond-enriched, and control diets-for the management of triglycerides (TGs), LDL cholesterol, TC, and HDL cholesterol. Random-effects network meta-analyses, ranking analyses based on the surface under the cumulative ranking (SUCRA) curves, and sensitivity analyses according to the potential sources of heterogeneity across the included studies were performed for each outcome. Results: Thirty-four trials enrolling 1677 participants were included in this study. The pistachio-enriched diet was ranked best for TG (SUCRA: 85%), LDL cholesterol (SUCRA: 87%), and TC (SUCRA: 96%) reductions. For TG and TC reductions, the walnut-enriched diet was ranked as the second-best diet. Regarding LDL cholesterol reduction, the almond-enriched diet was ranked second best. The pistachio-enriched and walnut-enriched diets were more effective at lowering TG, LDL cholesterol, and TC compared with the control diet. Regarding TG and TC reductions, the pistachio-enriched diet was also more effective than the hazelnut-enriched diet. For TG reduction, the walnut-enriched diet was better than the hazelnut-enriched diet. However, these findings are limited by the low quality of evidence ratings. In addition, the quality of this network meta-analysis was limited by the small number and generally poor reporting of available studies. Conclusions: The pistachio-enriched and walnut-enriched diet could be better alternatives for lowering TGs, LDL cholesterol, and TC compared with other nut-enriched diets included in this study. The findings warrant further evaluation by more high-quality studies. This network meta-analysis was registered at www.crd.york.ac.uk/PROSPERO as CRD42019131128.

Edible nuts for memory.

Arslan, J., A.-U.-H. Gilani, H. Jamshed, S.F. Khan, M.A. Kamal, 2020. Edible nuts for memory. Curr Pharm Des. 26(37):4712-4720.

Nuts hold prime significance throughout the world as they offer multiple health benefits owing to their highly nutritious profile. A number of scientific studies have demonstrated their actions against inflammation, oxidative damage, the aging process, as well as dementia or memory loss. However, only walnuts, followed by almonds, hazelnuts and pistachios, have shown promising results in empirical studies for memory improvements. So, the current review focuses on presenting hypotheses regarding anti-dementia property of nine different nuts: almond, walnut, pistachio, Brazil nut, peanut, pecans, cashew, hazelnut, and chestnut. The nutritious profile of nuts contains essential fats (mostly mono- and poly-unsaturated fatty acids), proteins (source for arginine, lysine and tryptophan), vitamins (riboflavin, folate, and various tocopherols), fibers, minerals (calcium, sodium, magnesium, phosphorus and potassium) and trace elements (copper, zinc, and selenium). Interestingly, the constituents of natural products, nuts being an excellent example, work synergistically and/or in a side-effect neutralizing manner. These latter properties can make nuts an alternate therapy for humankind to fight against memory loss.

Effects of a healthy diet enriched or not with pecan nuts or extra-virgin olive oil on the lipid profile of patients with stable coronary artery disease: a randomised clinical trial.

Campos, V.P., V.L. Portal, M.M. Markoski, A.S. Quadros, Â.C. Bersch-Ferreira, J. Garavaglia, A. Marcadenti, 2020. Effects of a healthy diet enriched or not with pecan nuts or extra-virgin olive oil on the lipid profile of patients with stable coronary artery disease: a randomised clinical trial. J Hum Nutr Diet. 33(3):439-450.

Background: The present study aimed to assess the effect of a healthy diet, enriched or not with pecan nuts or extra-virgin olive oil, on the lipid profile of patients with stable coronary artery disease (CAD). Methods: This was a randomised clinical trial conducted for 12 weeks with patients aged between 40 and 80 years with stable CAD for more than 60 days. Individuals were randomised into groups [control group (CG) with 67 patients, pecan nut group (PNG) with 68 patients and olive oil group (OOG) with 69 patients]. The CG was prescribed a healthy diet according to the nutritional guidelines; the PNG was prescribed the same healthy diet plus 30 g day-1 of pecan nuts; and the OOG was prescribed a healthy diet plus 30 mL day-1 of extra-virgin olive oil. Results: In total, 204 subjects were submitted to an intention-to-treat analysis. After adjustment for baseline values and type of statin used, there was no difference regarding low-density lipoprotein (LDL)-cholesterol (primary outcome), high-density lipoprotein (HDL)-cholesterol, LDL-cholesterol/HDL-cholesterol ratio and HDL-cholesterol/triglycerides ratio according to groups. However, the PNG exhibited a significant reduction in non-HDL-cholesterol levels [PNG: 114.9 (31) mg dL-1 ; CG: 127 (33.6) mg dL-1 ; OOG: 126.6 (37.4) mg dL-1 ; P = 0.033] and in the total cholesterol/HDL-cholesterol ratio [PNG: 3.7 (0.7); CG: 4.0 (0.8); OOG: 4.0 (0.8); P = 0.044] compared to the CG and OOG. Conclusions: Supplementing a healthy diet with 30 g day-1 of pecan nuts for 12 weeks did not improve LDL-cholesterol levels but may improve other lipid profile markers in patients with stable CAD.

Chemical composition and oxidative stability of eleven pecan cultivars produced in southern Brazil.

Ribeiro, S.R., B. Klein, Q.M. Ribeiro, I.D. Dos Santos, A.L. Gomes Genro, D. de Freitas Ferreira, J.J. Hamann, J.S. Barin, A.J. Cichoski, D. Fronza, V. Both, R. Wagner, 2020. Chemical composition and oxidative stability of eleven pecan cultivars produced in southern Brazil. Food Res Int. 136:109596.  doi: 10.1016/j.foodres.2020.109596. 

Nuts are considered highly nutritious foods and a source of health-promoting compounds. Therefore, the aim of this study was to evaluate the chemical composition (proximate composition, fatty acids, volatile compounds, total phenolics, squalene, and β-sitosterol) of eleven pecan cultivars harvested in Rio Grande do Sul State (Brazil) and investigate their oxidative stability by the Rancimat method. ‘Barton’ is the main cultivar produced in Brazil and presented the highest protein, linoleic acid, and linolenic acid values and the lowest saturated fatty acid values, which provide health benefits. ‘Mahan’ showed the highest oxidation induction time, both in extracted oil and ground samples, low abundance of lipid oxidation compounds, low polyunsaturated fatty acids, high levels of oleic acid and β-sitosterol, which suggests potential for storage. ‘Stuart’ and ‘Success’ had the highest total dietary fiber values. Moreover, analysis showed that ‘Chickasaw’ and ‘Success’ had large quantities of compounds correlated to lipid oxidation, suggesting low stability for long-term storage. These results imply that the physicochemical characteristics and proximate composition of pecan nut cultivars from southern Brazil have variable parameters that may depend on their genetic variability.

A comparison of fatty acid and sensory profiles of raw and roasted pecan cultivars.

Murley, T., B. Kelly, J. Adhikari, W. Reid, K. Koppel, 2020. A comparison of fatty acid and sensory profiles of raw and roasted pecan cultivars. J Food Sci. 85(9):2665-2672.

Five fatty acids comprise the bulk of the lipid content in pecans: palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid. Understanding the profiles of these fatty acids and how they relate to sensory characteristics may offer an explanation for flavor and flavor defects that may exist in certain cultivars of pecans. The objective of this study was to examine and compare fatty acid profiles of three cultivars of pecans (Major, Lakota, and Chetopa), over two crop years, under raw and roasted preparation methods, and understand the fatty acids association with sensory attributes. Percentages of palmitic, stearic, oleic, linoleic, and linolenic acids to total fatty acid content were determined using gas chromatography, and sensory profiles were generated using descriptive sensory analysis. Similar trends were seen across samples, with oleic acid comprising the majority of the total fatty acids and linolenic acid comprising the smallest percentage. There were significant differences in fatty acid content among cultivars and between pecans in the first and second crop year. Few associations were found between the fatty acids and sensory attributes, which suggest that combinations of the fatty acids contribute to certain pleasant or undesirable flavor attributes in the pecans. Subtle differences in fatty acid composition may lead to variation in flavor and flavor intensity or draw attention to or from certain attributes during consumption. Differences in crop year indicated that fatty acid content and therefore flavor are variable year to year. PRACTICAL APPLICATION: This study will help understand how fatty acid content of pecans varies from year to year. This should be taken into account when manufacturing products with pecans as the nutritional content of the product may change as the result.

Clinical and molecular characterization of walnut and pecan allergy (NUT CRACKER Study).

Elizur, A., M.Y. Appel, L. Nachshon, M.B. Levy, N. Epstein-Rigbi, B. Pontoppidan, J. Lidholm, M.R. Goldberg, 2020. Clinical and molecular characterization of walnut and pecan allergy (NUT CRACKER Study). J Allergy Clin Immunol: In Practice. 8(1):157-165.e2

Background: Diagnostic methods for distinguishing walnut-allergic patients from walnut-sensitized but walnut-tolerant individuals are limited. Furthermore, characteristics of single walnut versus dual walnut-pecan allergy are lacking. Objective: To provide clinical and molecular characteristics of walnut- and pecan-allergic patients. Methods: A prospective cohort study of 76 walnut-sensitized patients was performed. Walnut skin prick test and serum measurements of specific IgE to walnut and its components were performed. Patients were challenged to walnut and pecan unless they regularly consumed walnut and pecan. Results: Of the 76 patients studied, 61 were diagnosed as walnut-allergic and 15 as walnut-tolerant. IgE levels greater than or equal to 0.35 kUA/L to Jug r 1 or 4 provided the best diagnostic method for identifying walnut-allergic patients (accuracy, 0.93). Of the 61 walnut-allergic patients, 49 were pecan-allergic whereas 12 were pecan-tolerant. None of the walnut-tolerant patients was allergic to pecan. Dual allergic patients had significantly lower walnut reaction dose (median, 100 mg vs 1230 mg; P < .001). IgE levels greater than or equal to 0.35 kUA/L to Jug r 4, low-molecular-weight vicilins, or high-molecular-weight vicilins best segregated dual walnut-pecan–allergic patients from single walnut-allergic patients. Inhibition studies demonstrated that walnut pretreatment completely blocked IgE binding to pecan, whereas in some patients, pecan incubation only partially blocked IgE binding to walnut. Conclusions: Walnut components are helpful in diagnosing walnut allergy and in identifying patients with pecan coallergy. Competitive ELISA indicates that pecan comprises a subset of the allergenic determinants of walnut.

Tree nut snack consumption is associated with better diet quality and CVD risk in the UK adult population: National Diet and Nutrition Survey (NDNS) 2008–2014.

Dikariyanto, V., S.E. Berry, G.K. Pot, L. Francis, L. Smith, W.L. Hall, 2020. Tree nut snack consumption is associated with better diet quality and CVD risk in the UK adult population: National Diet and Nutrition Survey (NDNS) 2008–2014. Public Health Nutrition. 23(17), 3160–3169.

Objectives: To examine associations of tree nut snack (TNS) consumption with diet quality and cardiovascular disease (CVD) risk in UK adults from National Diet and Nutrition Survey (NDNS) 2008–2014. Design: Cross-sectional analysis using data from 4-d food diaries, blood samples and physical measurements for CVD risk markers. To estimate diet quality, modified Mediterranean Diet Score (MDS) and modified Healthy Diet Score (HDS) were applied. Associations of TNS consumption with diet quality and markers of CVD risk were investigated using survey-adjusted multivariable linear regression adjusted for sex, age, ethnicity, socio-economic and smoking status, region of residency and total energy and alcohol intake. Setting: UK free-living population. Subjects: 4738 adults (≥19 years). Results: TNS consumers had higher modified MDS and HDS relative to non-consumers. TNS consumers also had lower BMI, WC, SBP and DBP and higher HDL compared to non-consumers, although a dose-related fully adjusted significant association between increasing nut intake (g per 4184 kJ/1000 kcal energy intake) and lower marker of CVD risk was only observed for SBP. TNS consumption was also associated with higher intake of total fat, mono-, n-3 and n-6 polyunsaturated fatty acids, fibre, vitamin A, thiamin, folate, vitamin C, vitamin E, potassium, magnesium, phosphorus, selenium and iron; and lower intake of saturated fatty acids, trans fatty acids, total carbohydrate, starch, free sugar, sodium and chloride. Conclusions: TNS consumers report better dietary quality and consumption was associated with lower CVD risk factors. Encouraging replacement of less healthy snacks with TNS should be encouraged as part of general dietary guidelines.

Nut consumption and risk of cancer: A meta-analysis of prospective studies.

Long, J., Z. Ji, P. Yuan, T. Long, K. Liu, J. Li, L. Cheng, 2020. Nut consumption and risk of cancer: A meta-analysis of prospective studies. Cancer Epidemiol Biomarkers Prev. doi: 10.1158/1055-9965.EPI-19-1167.

Background: Epidemiologic studies have investigated the association between nut intake and risk for multiple cancers. However, current findings are inconsistent and no definite conclusion has been drawn from prospective studies. We therefore conducted this meta-analysis to evaluate the relationship between nut consumption and risk of cancer. Methods: Prospective studies reporting associations between nut intake and risk for all types of cancer were identified by searching Web of Science and PubMed databases up to June 2019. Risk ratios (RR) and 95% confidence intervals (CI) were extracted and then pooled across the studies using a random-effect model. A dose–response analysis was modeled by performing restricted cubic splines when data were available. Results: Thirty-three studies that included more than 50,000 cancer cases were eligible for the analysis. When comparing the highest with the lowest category of nut intake, high consumption of nuts was significantly associated with decreased risk of overall cancer (RR= 0.90; 95% CI, 0.85–0.95). The protective effect of nut consumption was especially apparent against cancers from the digestive system (RR=0.83; 95% CI, 0.77–0.89). Among different nut classes, significant association was only obtained for intake of tree nuts. We also observed a linear dose–response relationship between nut consumption and cancer: Per 20 g/day increase in nut consumption was related to a 10% (RR=0.90; 95% CI, 0.82–0.99) decrease in cancer risk. Conclusions: Our analysis demonstrated an inverse association of dietary nut consumption with cancer risk, especially for cancers from the digestive system. Impact: This study highlights the protective effect of nuts against cancer.

Association of total nut, tree nut, peanut, and peanut butter consumption with cancer incidence and mortality: A comprehensive systematic review and dose-response meta-analysis of observational studies.

Naghshi, S., M. Sadeghian, M. Nasiri, S. Mobarak, M. Asadi, O. Sadeghi, 2020. Association of total nut, tree nut, peanut, and peanut butter consumption with cancer incidence and mortality: A comprehensive systematic review and dose-response meta-analysis of observational studies. Adv Nutr. 0:1–16.

Data on the association of nut intake with risk of cancer and its mortality are conflicting. Although previous meta-analyses summarized available findings in this regard, some limitations may distort their findings. Moreover, none of these meta-analyses examined the dose-response associations of total nut intake with the risk of specific cancers as well as associations between specific types of nuts and cancer mortality. Therefore, this study aimed to summarize available findings on the associations of total nut (tree nuts and peanuts), tree nut (walnuts, pistachios, macadamia nuts, pecans, cashews, almonds, hazelnuts, and Brazil nuts), peanut (whole peanuts without considering peanut butter), and peanut butter consumption with risk of cancer and its mortality by considering the above-mentioned points. We searched the online databases until March 2020 to identify eligible articles. In total, 43 articles on cancer risk and 9 articles on cancer mortality were included in the current systematic review and meta-analysis. The summary effect size (ES) for risk of cancer, comparing the highest with lowest intakes of total nuts, was 0.86 (95% CI: 0.81, 0.92, P < 0.001, I2 = 58.1%; P < 0.01), indicating a significant inverse association. Such a significant inverse association was also seen for tree nut intake (pooled ES: 0.87, 95% CI: 0.78–0.96, P < 0.01, I2 = 15.8%; P = 0.28). Based on the dose-response analysis, a 5-g/d increase in total nut intake was associated with 3%, 6%, and 25% lower risks of overall, pancreatic, and colon cancers, respectively. In terms of cancer mortality, we found 13%, 18%, and 8% risk reductions with higher intakes of total nuts, tree nuts, and peanuts, respectively. In addition, a 5-g/d increase in total nut intake was associated with a 4% lower risk of cancer mortality. In conclusion, our findings support the protective association between total nut and tree nut intake and the risk of cancer and its mortality.

Metabolic syndrome features and excess weight were inversely associated with nut consumption after 1-year follow-up in the PREDIMED-Plus study.

Julibert, A., M. del Mar Bibiloni, L. Gallardo-Alfaro, M. Abbate, M.Á. Martínez-González, J. Salas-Salvadó, D. Corella, M. Fitó, J.A. Martínez, Á.M. Alonso-Gómez, J. Wärnberg, J. Vioque, D. Romaguera, J. Lopez-Miranda, R. Estruch, F.J. Tinahones, J. Lapetra, L. Serra-Majem, N. Cano-Ibañez, V. Martín-Sánchez, X. Pintó, J.J. Gaforio, P. Matía-Martín, J. Vidal, C. Vázquez, L. Daimiel, E. Ros, C. Sayon-Orea, N. Becerra-Tomás, I.M. Gimenez-Alba, O. Castañer, I. Abete, L. Tojal-Sierra, J. Pérez-López, L. Notario-Barandiaran, A. Colom, A. Garcia-Rios, S. Castro-Barquero, R. Bernal, J.M. Santos-Lozano, C.I. Fernández-Lázaro, P. Hernández-Alonso, C. Saiz, M.D. Zomeño, M.A. Zulet, M.C. Belló-Mora, J. Basterra-Gortari, S. Canudas, A. Goday, J.A. Tur, PREDIMED-PLUS investigators, 2020. Metabolic syndrome features and excess weight were inversely associated with nut consumption after 1-year follow-up in the PREDIMED-Plus study. J Nutr. 00:1–10.

Background: High nut consumption has been previously associated with decreased prevalence of metabolic syndrome (MetS) regardless of race and dietary patterns. Objectives: The aim of this study was to assess whether changes in nut consumption over a 1-y follow-up are associated with changes in features of MetS in a middle-aged and older Spanish population at high cardiovascular disease risk. Methods: This prospective 1-y follow-up cohort study, conducted in the framework of the PREvención con DIeta MEDiterránea (PREDIMED)-Plus randomized trial, included 5800 men and women (55-75 y old) with overweight/obesity [BMI (in kg/m2) ≥27 and <40] and MetS. Nut consumption (almonds, pistachios, walnuts, and other nuts) was assessed using data from a validated FFQ. The primary outcome was the change from baseline to 1 y in features of MetS [waist circumference (WC), glycemia, HDL cholesterol, triglyceride (TG), and systolic and diastolic blood pressure] and excess weight (body weight and BMI) according to tertiles of change in nut consumption. Secondary outcomes included changes in dietary and lifestyle characteristics. A generalized linear model was used to compare 1-y changes in features of MetS, weight, dietary intakes, and lifestyle characteristics across tertiles of change in nut consumption. Results: As nut consumption increased, between each tertile there was a significant decrease in WC, TG, systolic blood pressure, weight, and BMI (P < 0.05), and a significant increase in HDL cholesterol (only in women, P = 0.044). The interaction effect between time and group was significant for total energy intake (P < 0.001), adherence to the Mediterranean diet (MedDiet) (P < 0.001), and nut consumption (P < 0.001). Across tertiles of increasing nut consumption there was a significant increase in extra virgin olive oil intake and adherence to the MedDiet; change in energy intake, on the other hand, was inversely related to consumption of nuts. Conclusions: Features of MetS and excess weight were inversely associated with nut consumption after a 1-y follow-up in the PREDIMED-Plus study cohort. This trial was registered at isrctn.com as ISRCTN89898870.