Archive

Changes in nut consumption influence long-term weight change in US men and women.

Liu, X., Y. Li, M. Guasch-Ferre, W.C. Willett, J.-P. Drouin-Chartier, S.N. Bhupathiraju, D.K. Tobias, 2019. Changes in nut consumption influence long-term weight change in US men and women. bmjnph 2019;0:1–10. doi:10.1136/bmjnph-2019-000034.

Background: Nut consumption has increased in the US but little evidence exists on the association between changes in nut consumption and weight change. We aimed to evaluate the association between changes in total consumption of nuts and intakes of different nuts (including peanuts) and long-term weight change, in three independent cohort studies. Methods and Findings: Data collected in three prospective, longitudinal cohorts among health professionals in the US were analysed. We included 27, 521 men (Health Professionals Follow-up Study, 1986 to 2010), 61,680 women (Nurses’ Health Study, 1986 to 2010), and 55,684 younger women (Nurses’ Health Study II, 1991 to 2011) who were free of chronic disease at baseline in the analyses. We investigated the association between changes in nut consumption over 4-year intervals and concurrent weight change over 20–24 years of follow-up using multivariate linear models with an unstructured correlation matrix to account for within-individual repeated measures. 21,322 individuals attained a body mass index classification of obesity (BMI ≥30 kg/m2) at the end of follow-up. Average weight gain across the three cohorts was 0.32 kg each year. Increases in nut consumption, per 0.5 servings/ day (14 g), was significantly associated with less weight gain per 4-year interval (p<0.01 for all): −0.19 kg (95% CI -0.21 to -0.17) for total consumption of nuts, -0.37 kg (95% CI -0.45 to -0.30) for walnuts, -0.36 kg (95% CI -0.40 to -0.31) for other tree nuts, and -0.15 kg (95% CI -0.19 to -0.11) for peanuts. Increasing intakes of nuts, walnuts, and other tree nuts by 0.5 servings/day was associated with a lower risk of obesity. The multivariable adjusted RR for total nuts, walnuts, and other tree nuts was 0.97 (95% CI 0.96 to 0.99, p=0.0036), 0.85 (95% CI 0.81 to 0.89, p=0.0002), and 0.89 (95% CI 0.87 to 0.91, p<0.0001), respectively. Increasing nut consumption was also associated with a lower risk of gaining ≥2 kg or ≥5 kg (RR 0.89–0.98, p<0.01 for all). In substitution analyses, substituting 0.5 servings/day of nuts for red meat, processed meat, French fries, desserts, or potato, chips (crisps) was associated with less weight gain (p<0.05 for all). Our cohorts were largely composed of Caucasian health professionals with relatively higher socioeconomic status; thus the results may not be generalisable to other populations. Conclusion: Increasing daily consumption of nuts is associated with less long-term weight gain and a lower risk of obesity in adults. Replacing 0.5 servings/day of less healthful foods with nuts may be a simple strategy to help prevent gradual long-term weight gain and obesity.

The consumption of nuts is associated with better dietary and lifestyle patterns in polish adults: Results of WOBASZ and WOBASZ II Surveys.

Witkowska, A.M., A. Wa´skiewicz, M.E. Zujko, D. Szczes´niewska, W. S´migielski, U. Stepaniak, A. Paja, W. Drygas, 2019. The consumption of nuts is associated with better dietary and lifestyle patterns in polish adults: Results of WOBASZ and WOBASZ II Surveys. Nutrients. 11, 1410; doi:10.3390/nu11061410.

In recent years, the concept of the health benefits of synergistic dietary patterns as opposed to individual foods or food constituents has been developed. The aim of this study was to determine whether nut consumption is associated with healthier nutrition and lifestyle. The research was based on complete data obtained during two Polish National Multi-Centre Health Examination Surveys—WOBASZ (2003–2005) and WOBASZ II (2013–2014). Of the 12,946 participants who completed dietary assessments, 299 subjects reported consuming any quantity of whole nuts. A control group of 1184 non-nut consumers from both surveys was randomly selected for the study, with age, gender, study (WOBASZ, WOBASZ II), educational level, and season-related interactions taken into account. In this study, nut consumption was associated with favorable food and lifestyle choices, excluding smoking. Better dietary quality consisted of having a higher Healthy Diet Indicator score, an increased intake of polyphenols and antioxidants, lower intake of red meat, but higher of poultry and fruit, more frequent consumption of antiatherogenic food products, and less frequent consumption of processed meats. There was also greater interest in special diets, such as weight-loss diet. In addition, nut eaters were more physically active in their leisure time. While limited by 24-h recall of nut intake and possible misclassification of nut/non-nut consumer status, this research supports the synergistic health-promoting attitudes of those who were classified as nut consumers.

Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016.

Shan, Z., C.D. Rehm, G. Rogers, M. Ruan, D.D.Wang, F.B. Hu, D. Mozaffarian, F.F. Zhang, S.N. Bhupathiraju, 2019. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016. JAMA. 322(12):1178-1187.

IMPORTANCE: Changes in the economy, nutrition policies, and food processing methods can affect dietary macronutrient intake and diet quality. It is essential to evaluate trends in dietary intake, food sources, and diet quality to inform policy makers. OBJECTIVE: To investigate trends in dietary macronutrient intake, food sources, and diet quality among US adults. DESIGN, SETTING, AND PARTICIPANTS: Serial cross-sectional analysis of the US nationally representative 24-hour dietary recall data from 9 National Health and Nutrition Examination Survey cycles (1999-2016) among adults aged 20 years or older. EXPOSURE: Survey cycle. MAIN OUTCOMES AND MEASURES: Dietary intake of macronutrients and their subtypes, food sources, and the Healthy Eating Index 2015 (range, 0-100; higher scores indicate better diet quality; a minimal clinically important difference has not been defined). RESULTS: There were 43,996 respondents (weighted mean age, 46.9 years; 51.9% women). From 1999 to 2016, the estimated energy from total carbohydrates declined from 52.5% to 50.5% (difference, −2.02%; 95% CI, −2.41% to −1.63%), whereas that of total protein and total fat increased from 15.5%to 16.4% (difference, 0.82%; 95% CI, 0.67%-0.97%) and from 32.0%to 33.2%(difference, 1.20%; 95% CI, 0.84%-1.55%), respectively (all P < .001 for trend). Estimated energy from low-quality carbohydrates decreased by 3.25% (95% CI, 2.74%-3.75%; P < .001 for trend) from 45.1%to 41.8%. Increases were observed in estimated energy from high-quality carbohydrates (by 1.23% [95% CI, 0.84%-1.61%] from 7.42% to 8.65%), plant protein (by 0.38% [95%CI, 0.28%-0.49%] from 5.38%to 5.76%), saturated fatty acids (by 0.36% [95% CI, 0.20%-0.51%] from 11.5% to 11.9%), and polyunsaturated fatty acids (by 0.65% [95% CI, 0.56%-0.74%] from 7.58%to 8.23%) (all P < .001 for trend). The estimated overall Healthy Eating Index 2015 increased from 55.7 to 57.7 (difference, 2.01; 95% CI, 0.86-3.16; P < .001 for trend). Trends in high- and low-quality carbohydrates primarily reflected higher estimated energy from whole grains (0.65%) and reduced estimated energy from added sugars (−2.00%), respectively. Trends in plant protein were predominantly due to higher estimated intake of whole grains (0.12%) and nuts (0.09%). CONCLUSIONS AND RELEVANCE: From 1999 to 2016, US adults experienced a significant decrease in percentage of energy intake from low-quality carbohydrates and significant increases in percentage of energy intake from high-quality carbohydrates, plant protein, and polyunsaturated fat. Despite improvements in macronutrient composition and diet quality, continued high intake of low-quality carbohydrates and saturated fat remained.

Identification of plasma lipid metabolites associated with nut consumption in US men and women.

Malik, V.S., M. Guasch-Ferre, F.B. Hu, M.K. Townsend, O.A. Zeleznik, A.H. Eliassen, S.S. Tworoger, E.W. Karlson, K.H. Costenbader, A. Ascherio, K.M. Wilson, L.A. Mucci, E.L. Giovannucci, C.S. Fuchs, Y. Bao, 2019. Identification of plasma lipid metabolites associated with nut consumption in US men and women. J Nutr 149:1215–1221.

BACKGROUND: Intake of nuts has been inversely associated with risk of type 2 diabetes and cardiovascular disease, partly through inducing a healthy lipid profile. How nut intake may affect lipid metabolites remains unclear. OBJECTIVE: The aim of this study was to identify the plasma lipid metabolites associated with habitual nut consumption in US men and women. METHODS: We analyzed cross-sectional data from 1099 participants in the Nurses’ Health Study (NHS), NHS II, and Health Professionals Follow-up Study. Metabolic profiling was conducted on plasma by LC-mass spectrometry. Nut intake was estimated from food-frequency questionnaires. We included 144 known lipid metabolites that had CVs ≤25%. Multivariate linear regression was used to assess the associations of nut consumption with individual plasma lipid metabolites. RESULTS: We identified 17 lipid metabolites that were significantly associated with nut intake, based on a 1 serving (28 g)/d increment in multivariate models [false discovery rate (FDR) P value <0.05]. Among these species, 8 were positively associated with nut intake [C24:0 sphingomyelin (SM), C36:3 phosphatidylcholine (PC) plasmalogen-A, C36:2 PC plasmalogen, C24:0 ceramide, C36:1 PC plasmalogen, C22:0 SM, C34:1 PC plasmalogen, and C36:2 phosphatidylethanolamine plasmalogen], with changes in relative metabolite level (expressed in number of SDs on the log scale) ranging from 0.36 to 0.46 for 1 serving/d of nuts. The other 9 metabolites were inversely associated with nut intake with changes in relative metabolite level ranging from -0.34 to -0.44. In stratified analysis, 3 metabolites were positively associated with both peanuts and peanut butter (C24:0 SM, C24:0 ceramide, and C22:0 SM), whereas 6 metabolites were inversely associated with other nuts (FDR P value <0.05). CONCLUSIONS: A panel of lipid metabolites was associated with intake of nuts, which may provide insight into biological mechanisms underlying associations between nuts and cardiometabolic health. Metabolites that were positively associated with intake of nuts may be helpful in identifying potential biomarkers of nut intake.

Health benefits of nut consumption in middle‐aged and elderly population.

Rusu, M.E., A. Mocan, I.C.F.R. Ferreira, D.-S. Popa, 2019. Health benefits of nut consumption in middle‐aged and elderly population. Antioxidants. 8, 302; doi:10.3390/antiox8080302.

Aging is considered the major risk factor for most chronic disorders. Oxidative stress and chronic inflammation are two major contributors for cellular senescence, downregulation of stress response pathways with a decrease of protective cellular activity and accumulation of cellular damage, leading in time to age‐related diseases. This review investigated the most recent clinical trials and cohort studies published in the last ten years, which presented the influence of tree nut and peanut antioxidant diets in preventing or delaying age‐related diseases in middle‐aged and elderly subjects (≥55 years old). Tree nut and peanut ingestion has the possibility to influence blood lipid count, biochemical and anthropometric parameters, endothelial function and inflammatory biomarkers, thereby positively affecting cardiometabolic morbidity and mortality, cancers, and cognitive disorders, mainly through the nuts’ healthy lipid profile and antioxidant and anti-inflammatory mechanisms of actions. Clinical evidence and scientific findings demonstrate the importance of diets characterized by a high intake of nuts and emphasize their potential in preventing age‐related diseases, validating the addition of tree nuts and peanuts in the diet of older adults. Therefore, increased consumption of bioactive antioxidant compounds from nuts clearly impacts many risk factors related to aging and can extend health span and lifespan.

Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation.

Muralidharan J, S. Galiè, P. Hernández-Alonso, M. Bulló, J. Salas-Salvadó, 2019. Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation. Front. Nutr. 6:157. doi: 10.3389/fnut.2019.00157.

Diet is advocated as a key factor influencing gut microbiota. Several studies have focused on the effect of different carbohydrates, mainly fiber, on gut microbiota. However, what remains to be elucidated is the impact of a key component of diet that is widely debated upon: dietary fats. This review highlights the importance of understanding the source, quality, and type of fats that could differentially modify the intestinal microbiome. Fats from plant-based sources such as nuts, or vegetable oils have shown positive alterations in gut microbiota biodiversity both in in vivo and in vitro studies. Nuts and other plant-based
fat sources, dietary patterns (e.g., Mediterranean diet) rich in polyunsaturated and monounsaturated fats and, in some cases, polyphenols, and other phytochemicals, have been associated with increased bacterial diversity, as well beneficial butyrate-producing bacteria imparting a positive metabolic influence. It is with this interest, this narrative review brings together evidences on different plant-based fat sources, dietary patterns rich in vegetable fats, and associated changes in gut microbiota.

Keywords: gut microbiota, plant-based fats, nuts, vegetable oils, Mediterranean diet

Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An updated review based on meta-analyses.

Kim, Y., J.B. Keogh, P.M. Clifton, 2019. Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An updated review based on meta-analyses. Int. J. Environ. Res. Public Health. 16, 4957; doi:10.3390/ijerph16244957.

Aim. We aimed to determine if nut consumption decreases mortality and/or the risk of cardiometabolic diseases based on updated meta-analyses of epidemiological and intervention studies. Methods. An updated electronic search was conducted in PubMed/MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and the Cochrane Library databases for original meta-analyses to investigate the effects of nut consumption on cardiometabolic disease in humans. Results. Seven new meta-analyses were included in this updated review. Findings similar to our previous review were observed, showing that nut consumption significantly decreased cardiovascular disease (CVD) mortality (-19% to -25%; n = 4), coronary heart disease (CHD) mortality (-24% to -30%; n = 3), stroke mortality (-17% to -18%; n = 3), CVD incidence (-15% to -19 %; n = 4), CHD [or coronary artery disease (CAD)] incidence (-17% to -34%; n = 8), and stroke incidence (-10% to -11%; n = 6) comparing high with low categories of nut consumption. Fasting glucose levels (0.08 to 0.15 mmol/L; n = 6), total cholesterol (TC; 0.021 to 0.30 mmol/L; n = 10), and low-density lipoprotein cholesterol (LDL-C; 0.017 to 0.26 mmol/L; n = 10) were significantly decreased with nut consumption compared with control diets. Body weight and blood pressure were not significantly affected by nut consumption. Conclusion. Nut consumption appears to exert a protective effect on cardiometabolic disease, possibly through improved concentrations of fasting glucose, total cholesterol, and LDL-C.

Food groups in dietary prevention of Type 2 diabetes.

Basiak-Rasała, A., D. Różańska, K. Zatońska, 2019. Food groups in dietary prevention of Type 2 diabetes. Rocz Panstw Zakl Hig 70(4):347-357.

According to the World Health Organization diabetes will be the seventh leading cause of death worldwide in 2030. Majority of diabetic patients suffer from type 2 diabetes (T2DM), which is mostly avoidable. The most important modifiable risk factors of type 2 diabetes are: overweight and obesity, improper diet, sedentary lifestyle and tobacco smoking. Even in prediabetic state, improving diet and physical activity can slow down or even stop progression to diabetes. In the view of health burden of diabetes it is essential to thoroughly investigate the risk factors and develop more specific preventive strategies. Recently published studies focus on food groups rather than individual products to assess the link between nutrition and risk of type 2 diabetes. Identifying food groups of possible beneficial and deleterious effect on the risk of type 2 diabetes could facilitate the dietary counselling. The aim of the overview is to summarize the possible association between consumption of food groups on the risk of type 2 diabetes on the basis of available literature. Observations from studies and meta-analyses indicate on an inverse association between consumption of fresh vegetables and fruit, whole grains, lean dairy, fish, nuts and the risk of type 2 diabetes. Food groups that seemed to increase the risk of type 2 diabetes are: red and processed meat, refined grains, sugar-sweetened beverages. It is important to note, that no individual nutrients, but diverse dietary pattern, composed of every recommended food group in adequate amounts can contribute to healthy lifestyle and T2DM prevention.

The Alternative Healthy Eating Index and physical function impairment in men.

Hagan, K.A., F. Grodstein, 2019. The Alternative Healthy Eating Index and physical function impairment in men. J Nutr Health Aging. 23(5):459-465.

Objectives: Physical function is increasingly recognized as integral to healthy aging, in particular as a core component of mobility and independent living in older adults. Thus, it is important to identify strategies for the prevention of physical function decline. Design: Longitudinal cohort study. Setting and Participants: A total of 12,658 men from the Health Professionals Follow-Up Study were followed from 2008–2012. Measurements: We examined the association between the Alternative Healthy Eating Index-2010 (AHEI), a measure of diet quality combining 11 dietary components (vegetables, fruits, nuts and legumes, red and processed meats, sugar-sweetened beverages and fruit juices, alcohol, whole grains, omega-3 fatty acids, polyunsaturated fatty acids, trans fatty acids, sodium), and impairment in physical function, as measured by the SF-36. Multivariable logistic regression models were used to estimate the odds ratios (OR) and 95% confidence intervals (CI) of impairment in physical function. Results: In the multivariable-adjusted model, each 10-point increase in total AHEI score was associated with a 10% lower odds of impairment in physical function (OR=0.90, 95% CI: 0.86,0.95), and in the categorical analysis, men with AHEI scores in the top quintile had a 26% lower odds (OR=0.74, 95% CI:0.63,0.86) compared with men in the bottom quintile. For individual AHEI components, higher intake of vegetables (p-trend=0.01), nuts and legumes (p-trend<0.01), polyunsaturated fatty acids (p-trend<0.01) and lower intake of red and processed meats (p-trend=0.03) and sugar-sweetened beverages (p-trend=0.01) were significantly associated with lower odds of physical impairment. For specific foods, higher consumption of lettuce, broccoli, blueberries, peanuts, walnuts and other nuts were associated with lower odds of impairment. Conclusions: In this large cohort of older men, better overall diet quality was significantly associated with a lower odds of impairment in physical function. Given the value of physical function to healthy aging and quality of life, this may represent a particularly compelling public health rationale for older men to improve their diet.

The association between metabolic syndrome and peanuts, pine nuts, almonds consumption: The Ansan and Ansung Study.

Jung, J.Y., S.K. Park, C.-M. Oh, J.-M. Choi, J.-H. Ryoo, J. Kim, M.K. Kim, 2019. The association between metabolic syndrome and peanuts, pine nuts, almonds consumption: The Ansan and Ansung Study. Endocrine. 65(2):270-277.

Background: Previous studies reported an inverted relationship between nut consumption and the incidence of metabolic syndrome (MetS). The present study investigated the incidental risk for MetS according to peanut, almond, and fine nut consumption in the Korean population. Methods: In a community-based Korean cohort, 5306 Korean adults were divided into four groups according to their peanut, almond, and pine nut intake (<1/month, 1/month-0.5/week, 0.5-1/week, and ≥1/week, in which one serving = 15 g) and were followed-up for 10 years. A Cox proportional hazard model was used to evaluate the hazard ratios (HRs) with confidence intervals (CI) for MetS in each study group. Age subgroup (≥50 or <50 years) analysis was also conducted. Results: The age and multivariable-adjusted HRs with 95% CIs for MetS showed a significant inverse dose-response relationship between peanut, almond, and pine nut intake and the incidence of MetS in men and women (multivariable-adjusted HRs [95% CI] in men; 0.91 [0.76-1.09] in 1/month-0.5/week, 1.03 [0.80-1.31] in 0.5-1/week, 0.72 [0.56-0.93] in ≥1/week and in women; 0.81 [0.65-1.003] in 1/month-0.5/week, 0.76 [0.54-1.07] in 0.5-1/week, 0.57 [0.41-0.79] ≥1/week)). Subgroup analysis showed a significant difference in middle-aged men (≥1/week) and old-aged women (≥0.5/week). Conclusion: The results of the present study suggested that peanut, almond, and pine nut intake (≥15 g/week) may be inversely related to incidence risk of MetS in the Korean general population. Additionally, the association between nut consumption and MetS incidence risk may differ in sex and age subgroups.