Archive

Longitudinal analysis of nut-inclusive diets and body mass index among overweight and obese African American women living in rural Alabama and Mississippi, 2011–2013.

Sterling, S.R., B. Bertrand, S. Judd, T.L. Carson, P. Chandler-Laney, M.L. Baskin, 2017. Longitudinal analysis of nut-inclusive diets and body mass index among overweight and obese African American women living in rural Alabama and Mississippi, 2011–2013. Prev Chronic Dis 2017;14:160595. DOI: https://doi.org/10.5888/pcd14.160595.

Introduction: Nuts, when eaten alongside other nutritionally rich foods, may decrease obesity and related chronic disease risks, which are high among African American women in the rural South. We monitored changes in nut intake, other obesity-related foods (fruits, vegetables, red or processed meats, added sugars), and body mass index (BMI) over a 2-year weight loss intervention among 383 overweight and obese African American women in rural Alabama and Mississippi. Methods: Two dietary recalls were administered at 4 points over 24 months. Mann–Whitney tests compared differences in median food group intake between nut consumers and non-nut consumers, and t tests identified BMI differences between groups. Mixed linear models tested the relationship between nut intake and intake of the select food groups, and between nut intake and BMI over time. Results: Overall nut consumers ate more fruits and vegetables and less red meat than non-nut consumers. Nut consumers had lower BMI values than non-nut consumers. Weight loss by the end of the intervention was significant for nut consumers but not for non-nut consumers, even after accounting for kilocalorie consumption and physical activity engagement. Conclusion: Nut consumption is associated with consumption of other nutritionally rich foods and lower BMI among African American women in rural Alabama and Mississippi. Future interventions should target increasing daily nut intake, decreasing added sugar intake, and identifying strategies to encourage positive dietary changes to continue after an intervention.

Associations between nut consumption and inflammatory biomarkers

Yu, Z., V.S. Malik, N. Keum, F.B. Hu, E.L. Giovannucci, M.J. Stampfer, W.C. Willett, C.S. Fuchs, Y. Bao, 2016. Associations between nut consumption and inflammatory biomarkers. AJCN. First published ahead of print July 27, 2016 as doi: 10.3945/ajcn.116.134205.

Background: Increased nut consumption has been associated with reduced risk of cardiovascular disease and type 2 diabetes, as well as a healthy lipid profile. However, the associations between nut consumption and inflammatory biomarkers are unclear. Objective: We investigated habitual nut consumption in relation to inflammatory biomarkers in 2 large cohorts of US men and women. Design: We analyzed cross-sectional data from 5013 participants in the Nurses’ Health Study (NHS) and Health Professionals Follow-Up Study (HPFS) who were free of diabetes. Nut intake, defined as intake of peanuts and other nuts, was estimated from food frequency questionnaires, and cumulative averages from 1986 and 1990 in the NHS and from 1990 and 1994 in the HPFS were used. Plasma biomarkers were collected in 1989–1990 in the NHS and 1993–1995 in the HPFS. Multivariate linear regression was used to assess the associations of nut consumption with fasting plasma C-reactive protein (CRP, n = 4941), interleukin 6 (IL-6, n = 2859), and tumor necrosis factor receptor 2 (TNFR2, n = 2905). Results: A greater intake of nuts was associated with lower amounts of a subset of inflammatory biomarkers, after adjusting for demographic, medical, dietary, and lifestyle variables. The relative concentrations (ratios) and 95% CIs comparing subjects with nut intake of $5 times/wk and those in the categories of never or almost never were as follows: CRP: 0.80 (0.69, 0.90), P-trend = 0.0003; and IL-6: 0.86 (0.77, 0.97), P-trend = 0.006. These associations remained significant after further adjustment for body mass index. No significant association was observed with TNFR2. Substituting 3 servings of nuts/wk for 3 servings of red meat, processed meat, eggs, or refined grains/wk was associated with significantly lower CRP (all P , 0.0001) and IL-6 (P ranges from 0.001 to 0.017). Conclusion: Frequent nut consumption was associated with a healthy profile of inflammatory biomarkers.

Nut consumption and prostate cancer risk and mortality.

Wand, W., M. Yang, S.A. Kenfield, F.B. Hu, M.J. Stampfer, W.C. Willett, C.S. Fuchs, E.L. Giovannucci,  Y. Bao, 2016. Nut consumption and prostate cancer risk and mortality. British Journal of Cancer.doi:10.1038/bjc.2016.181

Background: Little is known of the association between nut consumption, and prostate cancer (PCa) incidence and survivorship. Methods: We conducted an incidence analysis and a case-only survival analysis in the Health Professionals Follow-up Study on the associations of nut consumption (updated every 4 years) with PCa diagnosis, and PCa-specific and overall mortality. Results: In 26 years, 6810 incident PCa cases were identified from 47 299 men. There was no association between nut consumption and being diagnosed with PCa or PCa-specific mortality. However, patients who consumed nuts five or more times per week after diagnosis had a significant 34% lower rate of overall mortality than those who consumed nuts less than once per month (HR=0.66, 95% CI: 0.52–0.83, P-trend=0.0005). Conclusions: There were no statistically significant associations between nut consumption, and PCa incidence or PCa-specific mortality. Frequent nut consumption after diagnosis was associated with significantly reduced overall mortality.

Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials.

Del Gobbo, L.C., M.C. Falk, R. Feldman, K. Lewis, D. Mozaffarian, 2015. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. AJCN. First published ahead of print November 11, 2015 as doi: 10.3945/ajcn.115.110965.

Background: The effects of nuts on major cardiovascular disease (CVD) risk factors, including dose-responses and potential heterogeneity by nut type or phytosterol content, are not well established. Objectives: We examined the effects of tree nuts (walnuts, pistachios, macadamia nuts, pecans, cashews, almonds, hazelnuts, and Brazil nuts) on blood lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein, and triglycerides], lipoproteins [apolipoprotein A1, apolipoprotein B (ApoB), and apolipoprotein B100], blood pressure, and inflammation (C-reactive protein) in adults aged $18 y without prevalent CVD. Design: We conducted a systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Two investigators screened 1301 potentially eligible PubMed articles in duplicate. We calculated mean differences between nut intervention and control arms, dose-standardized to one 1-oz (28.4 g) serving/d, by using inverse-variance fixed-effects meta-analysis. Dose-response for nut intake was examined by using linear regression and fractional polynomial modeling. Heterogeneity by age, sex, background diet, baseline risk factors, nut type, disease condition, duration, and quality score was assessed with meta-regression. Publication bias was evaluated by using funnel plots and Egger’s and Begg’s tests. Results: Sixty-one trials met eligibility criteria (n = 2582). Interventions ranged from 3 to 26 wk. Nut intake (per serving/d) lowered total cholesterol (24.7 mg/dL; 95% CI: 25.3, 24.0 mg/dL), LDL cholesterol (24.8 mg/dL; 95% CI: 25.5, 24.2 mg/dL), ApoB (23.7 mg/dL; 95% CI: 25.2, 22.3 mg/dL), and triglycerides (22.2 mg/dL; 95% CI: 23.8, 20.5 mg/dL) with no statistically significant effects on other outcomes. The dose-response between nut intake and total cholesterol and LDL cholesterol was nonlinear (P-nonlinearity , 0.001 each); stronger effects were observed for $60 g nuts/d. Significant heterogeneity was not observed by nut type or other factors. For ApoB, stronger effects were observed in populations with type 2 diabetes (211.5 mg/dL; 95% CI: 216.2, 26.8 mg/dL) than in healthy populations (22.5 mg/dL; 95% CI: 24.7, 20.3 mg/dL) (P-heterogeneity = 0.015). Little evidence of publication bias was found. Conclusions: Tree nut intake lowers total cholesterol, LDL cholesterol, ApoB, and triglycerides. The major determinant of cholesterol lowering appears to be nut dose rather than nut type. Our findings also highlight the need for investigation of possible stronger effects at high nut doses and among diabetic populations.

Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005–2010.

O’Neil, C.E., V.L. Fulgoni, T.A. Nicklas, 2015. Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005–2010. Nutrition Journal. 14:64. DOI 10.1186/s12937-015-0052-x

Introduction: Previous research has shown inconsistencies in the association of tree nut consumption with risk factors for cardiovascular disease (CVD) and metabolic syndrome (MetS). Objective: To determine the association of tree nut consumption with risk factors for CVD and for MetS in adults. Methods: NHANES 2005–2010 data were used to examine the associations of tree nut consumption with health risks in adults 19+ years (n = 14,386; 51 % males). Tree nuts were: almonds, Brazil nuts, cashews, filberts [hazelnuts], macadamias, pecans, pine nuts, pistachios, and walnuts. Group definitions were non-consumers < ¼ ounce/day and consumers of ≥ ¼ ounce/day tree nuts using data from 24-h dietary recalls. Means and ANOVA (covariate adjusted) were determined using appropriate sample weights. Using logistic regression, odds ratios of being overweight (OW)/obese (OB) (body mass index [BMI] >25/<30 and ≥30, respectively) and having CVRF or MetS, were determined. Results: Tree nut consumption was associated with lower BMI (p = 0.004), waist circumference (WC) (p = 0.008), systolic blood pressure (BP) (p = 0.001), Homeostatic Model Assessment—Insulin Resistance (p = 0.043), and higher high density lipoprotein-cholesterol (p = 0.022), compared with no consumption, and a lower likelihood of OB (−25 %), OW/OB (−23 %), and elevated WC (−21 %). Conclusions: Tree nut consumption was associated with better weight status and some CVRF and MetS components.

Nut consumption and risk of colorectal cancer in women.

Yang, M., F.B. Hu, E.L. Giovannucci, M.J. Stampfer, W.C. Willett, C.S. Fuchs, K. Wu, Y. Bao, 2015. Nut consumption and risk of colorectal cancer in women. European Journal of Clinical Nutrition doi:10.1038/ejcn.2015.66.

Background/Objectives: Increasing nut consumption has been associated with reduced risk of obesity and type II diabetes, the risk factors for colorectal cancer. However, the association between nut consumption and colorectal cancer risk is unclear. We aimed to examine the association of long-term nut consumption with risk of colorectal cancer. Subjects/Methods: We prospectively followed 75 680 women who were free of cancer at baseline in the Nurses’ Health Study, and examined the association between nut consumption and colorectal cancer risk. Nut consumption was assessed at baseline and updated every 2–4 years. Relative risks (RRs) and 95% confidence intervals (95% CIs) were estimated using Cox proportional hazards models. Results: During 2 103 037 person-years of follow-up, we identified 1503 colorectal cancer cases. After adjustment for other known or suspected risk factors, women who consumed nuts 2 or more times per week (that is,  56 g per week) had a 13% lower risk of colorectal cancer compared with those who rarely consumed nuts, but the association was not statistically significant (RR: 0.87; 95%CI: 0.72–1.05; P-trend: 0.06). No association was observed for peanut butter. Conclusions: In this large prospective cohort of women, frequent nut consumption was not significantly associated with colorectal cancer risk after adjusting for other risk factors.

Allergic reactions to pine nut: A review.

Cabanillas, B., N. Novak, 2015. Allergic reactions to pine nut: A review. J Investig Allergol Clin Immunol. 25(5):329-333.

Pine nut is a nutrient-rich food with a beneficial impact on human health. The many bioactive constituents of pine nut interact synergistically to affect human physiology in a favorable way. However, pine nut can trigger dangerous allergic reactions. Severe anaphylactic reactions to pine nut accounted for most of the 45 cases reported in the scientific literature. Pine nut allergy seems to be characterized by low IgE cross-reactivity with other commonly consumed nuts and a high monosensitization rate. The present review provides updated information on allergic reactions to pine nut, molecular characterization of its allergens, and potential homologies with other nut allergens.

The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials.

Mohammadifard, N., A. Salehi-Abargouei, J. Salas-Salvadó, M. Guasch-Ferré, K. Humphries,  N. Sarrafzadegan, 2015. The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Clin Nutr. 101:966–82.

Background: Although several studies have assessed the effects of nut consumption (tree nuts, peanuts, and soy nuts) on blood pressure (BP), the results are conflicting. Objective: The aim was to conduct a systematic review and meta-analysis of published randomized controlled trials (RCTs) to estimate the effect of nut consumption on BP. Design: The databases MEDLINE, SCOPUS, ISI Web of Science, and Google Scholar were searched for RCTs carried out between 1958 and October 2013 that reported the effect of consuming single or mixed nuts (including walnuts, almonds, pistachios, cashews, hazelnuts, macadamia nuts, pecans, peanuts, and soy nuts) on systolic BP (SBP) or diastolic BP (DBP) as primary or secondary outcomes in adult populations aged $18 y. Relevant articles were identified by screening the abstracts and titles and the full text. Studies that evaluated the effects for, 2 wk or in which the control group ingested different healthy oils were excluded. Mean 6 SD changes in SBP and DBP in each treatment group were recorded for meta-analysis. Results: Twenty-one RCTs met the inclusion criteria. Our findings suggest that nut consumption leads to a significant reduction in SBP in participants without type 2 diabetes [mean difference (MD): 21.29; 95% CI: 22.35, 20.22; P = 0.02] but not in the total population. Subgroup analyses of different nut types suggest that pistachios, but not other nuts, significantly reduce SBP (MD: 21.82; 95% CI: 22.97, 20.67; P = 0.002). Our study suggests that pistachios (MD: 20.80; 95% CI: 21.43, 20.17; P = 0.01) and mixed nuts (MD: 21.19; 95% CI: 22.35, 20.03; P = 0.04) have a significant reducing effect on DBP. We found no significant changes in DBP after the consumption of other nuts. Conclusions: Total nut consumption lowered SBP in participants without type 2 diabetes. Pistachios seemed to have the strongest effect on reducing SBP and DBP. Mixed nuts also reduced DBP.

Tree nut consumption is associated with better nutrient adequacy and diet quality in adults: national health and nutrition examination survey 2005–2010.

O’Neil, C.E., T.A. Nicklas, V.L. Fulgoni III, 2015. Tree nut consumption is associated with better nutrient adequacy and diet quality in adults: national health and nutrition examination survey 2005–2010.  Nutrients. 7(1):595-607.

Nutrient adequacy of tree nut consumers has not been examined. The National Health and Nutrition Examination Survey 2005–2010 data were used to assess the association of tree nut consumption by adults 19+ years (= 14,386) with nutrient adequacy and diet quality. Covariate adjusted usual intake was determined using two 24-h dietary recalls and the National Cancer Institute method. Percentages of the consumption groups below the Estimated Average Requirement (EAR) or above the Adequate Intake (AI) were determined. Diet quality was determined using the Healthy Eating Index-2005 (HEI) score. Usual intake data showed consumers of tree nuts had a lower percentage (< 0.0001) of the population below the EAR for vitamins A (22 ± 5 vs. 49 ± 1), E (38 ± 4 vs. 94 ± 0.4) and C (17 ± 4 vs. 44 ± 1); folate (2.5 ± 1.5 vs. 12 ± 0.6); calcium (26 ± 3 vs. 44 ± 1); iron (3 ± 0.6 vs. 9 ± 0.4); magnesium (8 ± 1 vs. 60 ± 1); and zinc (1.5 ± 1 vs. 13 ± 1). Tree nut consumers had a higher percentage (< 0.0001) of the population above the AI for fiber (33 ± 3 vs. 4 ± 0.3) and potassium (12 ± 3 mg vs. 2 ± 0.2 mg). HEI-2005 total score was higher (< 0.0001) in tree nut consumers (61 ± 0.7 vs. 52 ± 0.3) than non-consumers. Health professionals should encourage the use of tree nuts as part of a dietary approach to healthy eating.

Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials.

Viguiliouk, E., C.W.C. Kendall, S.B. Mejia, A.I. Cozma, V. Ha, A. Mirrahimi, V.H. Jayalath, L.S.A. Augustin, L. Chiavaroli, L.A. Leiter, R.J. de Souza, D. J.A. Jenkins, J.L. Sievenpiper, 2014. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLOS ONE. DOI: 10.1371/journal.pone.0103376

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0103376

Background: Tree nut consumption has been associated with reduced diabetes risk, however, results from randomized trials on glycemic control have been inconsistent. Objective: To provide better evidence for diabetes guidelines development, we conducted a systematic review and meta-analysis of randomized controlled trials to assess the effects of tree nuts on markers of glycemic control in individuals with diabetes. Data Sources: MEDLINE, EMBASE, CINAHL, and Cochrane databases through 6 April 2014. Study Selection: Randomized controlled trials ≥3 weeks conducted in individuals with diabetes that compare the effect of diets emphasizing tree nuts to isocaloric diets without tree nuts on HbA1c, fasting glucose, fasting insulin, and HOMA-IR. Data Extraction and Synthesis: Two independent reviewer’s extracted relevant data and assessed study quality and risk of bias. Data were pooled by the generic inverse variance method and expressed as mean differences (MD) with 95% CI’s. Heterogeneity was assessed (Cochran Q-statistic) and quantified (I2). Results: Twelve trials (n = 450) were included. Diets emphasizing tree nuts at a median dose of 56 g/d significantly lowered HbA1c (MD = −0.07% [95% CI:−0.10, −0.03%]; P = 0.0003) and fasting glucose (MD = −0.15 mmol/L [95% CI: −0.27, −0.02 mmol/L]; P = 0.03) compared with control diets. No significant treatment effects were observed for fasting insulin and HOMA-IR, however the direction of effect favoured tree nuts. Limitations: Majority of trials were of short duration and poor quality. Conclusions: Pooled analyses show that tree nuts improve glycemic control in individuals with type 2 diabetes, supporting their inclusion in a healthy diet. Owing to the uncertainties in our analyses there is a need for longer, higher quality trials with a focus on using nuts to displace high-glycemic index carbohydrates.