Mattes, R.D., M.L. Dreher, 2010. Nuts and healthy body weight maintenance mechanisms. Asia Pac J Clin Nutr. 19(1):137-141.
Nuts are rich sources of multiple nutrients and phytochemicals associated with health benefits, including reduced cardiovascular disease risk. This has prompted recommendations to increase their consumption. However, they are also high in fat and are energy dense. The associations between these properties, positive energy balance and body weight raise questions about such recommendations. Numerous epidemiological and clinical studies show that nuts are not associated with weight gain. Mechanistic studies indicate this is largely attributable to the high satiety and low metabolizable energy (poor bioaccessibility leading to inefficient energy absorption) properties of nuts. Compensatory dietary responses account for 55-75% of the energy provided by nuts. Limited data suggest that routine nut consumption is associated with elevated resting energy expenditure and the thermogenic effect of feeding, resulting in dissipation of another portion of the energy they provide. Additionally, trials contrasting weight loss through regimens that include or exclude nuts indicate improved compliance and greater weight loss when nuts are permitted. Nuts may be included in the diet, in moderation, to enhance palatability, nutrient quality, and chronic disease risk reduction without compromising weight loss or maintenance.
Bolling, B.W., D.L. McKay, J. B. Blumberg, 2010. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac J Clin Nutr. 19(1):117-123 117.
In addition to being a rich source of several essential vitamins and minerals, mono- and polyunsaturated fatty acids, and fiber, most tree nuts provide an array of phytochemicals that may contribute to the health benefits attributed to this whole food. Although many of these constituents remain to be fully identified and characterized, broad classes include the carotenoids, hydrolyzable tannins, lignans, naphthoquinones, phenolic acids, phytosterols, polyphenols, and tocopherols. These phytochemicals have been shown to possess a range of bioactivity, including antioxidant, antiproliferative, anti-inflammatory, antiviral, and hypocholesterolemic properties. This review summarizes the current knowledge of the carotenoid, phenolic, and tocopherol content of tree nuts and associated studies of their antioxidant actions in vitro and in human studies. Tree nuts are a rich source of tocopherols and total phenols and contain a wide variety of flavonoids and proanthocyanidins. In contrast, most tree nuts are not good dietary sources of carotenoids and stilbenes. Phenolic acids are present in tree nuts but a systematic survey of the content and profile of these compounds is lacking. A limited number of human studies indicate these nut phytochemicals are bioaccessible and bioavailable and have antioxidant actions in vivo.
O’Neil, C.E., D. R. Keast, V.L. Fulgoni, T.A. Nicklas, 2010. Tree nut consumption improves nutrient intake and diet quality in US adults: an analysis of National Health and Nutrition Examination Survey (NHANES) 1999-2004. Asia Pac J Clin Nutr. 19(1):142-150.
Recent epidemiologic studies assessing tree nut (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, and walnuts) consumption and the association with nutrient intake and diet quality are lacking. This study determined the association of tree nut consumption and nutrient intake and diet quality using a nationally representative sample of adults. Adults 19+ years (y) (n=13,292) participating in the 1999-2004 National Health and Nutrition Examination Survey were used. Intake was determined from 24-hour diet recalls; tree nut consumers were defined as those consuming ≥¼ ounce/day (7.09 g). Means, standard errors, and ANOVA (adjusted for covariates) were determined using appropriate sample weights. Diet quality was measured using the Healthy Eating Index-2005. Among consumers, mean intake of tree nuts/tree nut butters was 1.19 + 0.04 oz/d versus 0.01 + 0.00 oz/d for non-consumers. In this study, 5.5 ± 0.3 % of individuals 19-50 y (n=7,049) and 8.4 ± 0.6 % of individuals 51+ y (n=6,243) consumed tree nuts/tree nut butters. Mean differences (p<0.01) between tree nut consumers and non-consumers of adult shortfall nutrients were: fiber (+5.0 g/d), vitamin E (+3.7 mg AT/d), calcium (+73 mg/d), magnesium (+95 mg/d), and potassium (+260 mg/d). Tree nut consumers had lower sodium intake (-157 mg/d, p<0.01). Diet quality was significantly higher in tree nut consumers (58.0±0.4 vs. 48.5±0.3, p<0.01). Tree nut consumption was associated with a higher overall diet quality score and improved nutrient intakes. Specific dietary recommendations for nut consumption should be provided for consumers.
López-Uriarte P, R. Nogués, G. Saez, M. Bulló, M. Romeu, L. Masana, C. Tormos, P. Casas-Agustench, J. Salas-Salvadó, 2010. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin Nutr. 29(3):373-80.
BACKGROUND & AIMS: Oxidative stress has a key role in atherosclerosis, cancer and other chronic diseases. Some bioactive compounds in nuts have been implicated in antioxidant activities. OBJECTIVE: We assessed how nut consumption affected several markers of oxidation and endothelial function (EF) in metabolic syndrome (MetS) patients. PATIENTS AND METHODS: A randomized, controlled, parallel feeding trial was conducted on 50 MetS adults who were recommended a healthy diet supplemented or not with 30 g of mixed nuts (Nut and Control groups, respectively) every day for 12 weeks. The plasma antioxidant capacity (AC), oxidized LDL (oxLDL), conjugated diene (CD) formation, urine 8-isoprostanes, DNA damage assessed by yield of urine 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG), and EF assessed by peripheral artery tonometry (PAT) and biochemical markers, were measured at baseline and the end of the intervention. RESULTS: No significant differences in changes between groups were observed in AC, oxLDL, CD, 8-isoprostanes or EF during the intervention, whereas the reduction in DNA damage was significant in the Nut group compared to Control group (P < 0.001). CONCLUSION: Nut consumption has no deleterious effect on lipid oxidation. The decrease in DNA damage observed in this study could contribute to explain the beneficial effects of regular nut consumption on some MetS features and several chronic diseases.
Kendall, C.W.C., A. Esfahani, J. Truan, K. Srichaikul, D.J.A. Jenkins, 2010. Health benefits of nuts in prevention and management of diabetes. Asia Pac J Clin Nutr. 19(1):110-116.
The effects of tree nuts on risk factors for coronary heart disease (CHD), in particular blood lipids, have been investigated in a number of studies and the beneficial effects are now recognized. The beneficial effects of nuts on CHD in cohort studies have also been clearly demonstrated. However, while there is also reason to believe the unique micro- and macronutrient profiles of nuts may help to control blood glucose levels, relatively few studies have investigated their role in diabetes control and prevention. Nuts are low in available carbohydrate, have a healthy fatty acid profile, and are high in vegetable protein, fiber and magnesium. Acute feeding studies indicate that when eaten alone nuts have minimal effects on raising postprandial blood glucose levels. In addition, when nuts are consumed with carbohydrate rich foods, they blunt the postprandial glycemic response of the carbohydrate meal. Despite the success of these acute studies, only a limited number of trials have been conducted with nuts in type 2 diabetes. These studies have either been of insufficient duration to observe changes in HbA1c, as the standard measure of glycemic control, or have been underpowered. Therefore, more long-term clinical trials are required to examine the role of nuts on glycemic control in patients with prediabetes and diabetes. Overall, there are good reasons to justify further exploration of the use of nuts in the prevention of diabetes and its microand macrovascular complications.
Sabaté, J., M. Wien, 2010. Nuts, blood lipids and cardiovascular disease. Asia Pac J Clin Nutr. 19(1):131-136.
The aim of this paper is to evaluate nut-related epidemiological and human feeding study findings and to discuss the important nutritional attributes of nuts and their link to cardiovascular health. Frequent nut consumption has been found to be protective against coronary heart disease in five large epidemiological studies across two continents. A qualitative summary of the data from four of these studies found an 8.3% reduction in risk of death from coronary heart disease for each weekly serving of nuts. Over 40 dietary intervention studies have been conducted evaluating the effect of nut containing diets on blood lipids. These studies have demonstrated that intake of different kinds of nuts lower total and LDL cholesterol and the LDL: HDL ratio in healthy subjects or patients with moderate hypercholesterolaemia, even in the context of healthy diets. Nuts have a unique fatty acid profile and feature a high unsaturated to saturated fatty acid ratio, an important contributing factor to the beneficial health effects of nut consumption. Additional cardioprotective nutrients found in nuts include vegetable protein, fiber, α-tocopherol, folic acid, magnesium, copper, phytosterols and other phytochemicals.
Zhang, J., P.M. Kris-Etherton , J.T. Thompson, J.P. Vanden Heuvel, 2010. Effect of pistachio oil on gene expression of IFN-induced protein with tetratricopeptide repeats 2: A biomarker of inflammatory response. Mol. Nutr. Food Res. 54:1–10.
When incorporated into the diet, pistachios have a beneficial effect on lipid and lipoprotein profiles. However, little is known about potential anti-inflammatory properties. This study was conducted to determine whether pistachio oil and an organic extract from pistachio oil extract (PE) regulated expression of inflammation-related genes. A mouse macrophage cell line (RAW 264.7 cells) was treated with pistachio oil and gene expression microarray analyses were performed. Pistachio oil significantly affected genes involved in immune response, defense response to bacteria, and gene silencing, of which INF-induced protein with tetratricopeptide repeats 2 (Ifit-2) was the most dramatically reduced. PE reduced the LPS-induced Ifit-2 by 78% and the bioactive molecules contained in PE, linoleic acid, and β-sitosterol recapitulated this inhibition. Promoter analysis identified two adjacent IFN-stimulated response elements, which lie between -110 and -85bp of the 5’-flanking region of the Ifit-2 promoter, as being responsive to LPS activation and inhibition by PE. Our results indicate that pistachio oil and bioactive molecules present therein decrease Ifit-2 expressions, and due to the sensitivity of this effect, this gene is a potential biomarker for monitoring diet-induced changes in inflammation.
Sari, I., Y. Baltaci, C. Bagci,V. Davutoglu, O. Erel, H. Celik, O. Ozer, N. Aksoy, M. Aksoy, 2010. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: A prospective study. Nutrition. 26(4):399-404.
Objective: Recent studies have suggested that nuts have favorable effects beyond lipid lowering. We aimed to investigate effect of the Antep pistachio (Pistacia vera L.) on blood glucose, lipid parameters, endothelial function, inflammation, and oxidation in healthy young men living in a controlled environment. Methods: A Mediterranean diet was administered to normolipidemic 32 healthy young men (mean age 22 y, range 21-24) for 4 wk. After 4 wk, participants continued to receive the Mediterranean diet but pistachio was added for 4 wk by replacing the monounsaturated fat content constituting 20% of daily caloric intake. Fasting blood samples and brachial endothelial function measurements were performed at baseline and after each diet. Results: Compared with the Mediterranean diet, the pistachio diet decreased glucose (P <0.001, -8.8±8.5%), low-density lipoprotein (P<0.001, -23.2 ± 11.9%), total cholesterol (P<0.001, -21.2 ±9.9%), and triacylglycerol (P = 0.008, -13.8 ±33.8%) significantly and high-density lipoprotein (P = 0.069, —3.1 ± 11.7%) non-significantly. Total cholesterol/high-density lipoprotein and low-density lipoprotein/high-density lipoprotein ratios decreased significantly (P<0.001 for both). The pistachio diet significantly improved endothelium-dependent vasodilation (P = 0.002, 30% relative increase), decreased serum interleukin-6, total oxidant status, lipid hydroperoxide, and malondialdehyde and increased superoxide dismutase (P<0.001 for all), whereas there was no significant change in C-reactive protein and tumor necrosis factor-a levels. Conclusion: In this trial, we demonstrated that a pistachio diet improved blood glucose level, endothelial function, and some indices of inflammation and oxidative status in healthy young men. These findings are in accordance with the idea that nuts, in particular pistachio nuts, have favorable effects beyond lipid lowering that deserve to be evaluated with prospective follow-up studies.
Alturfan, A.A., E. Emekli-Alturfan, E. Uslu, 2009. Consumption of pistachio nuts beneficially affected blood lipids and total antioxidant activity in rats fed a high-cholesterol diet. Folia Biol (Praha). 55(4):132-6.
Although nuts are typically high in dietary fat, novel studies have shown that regular consumption of these heart-healthy foods might confer a beneficial effect on cardiovascular disease risk. In the present study, we aimed to analyse the effects of pistachio consumption on blood lipids, antioxidant activity, oxidative stress and sialic acid levels in high-fat-fed rats for 8 weeks. The oxidant-antioxidant status was evaluated by the determination of lipid peroxidation (thiobarbituric acid-reactive substances), total antioxidant activity, reduced glutathione content, activity of superoxide dismutase and total thiol levels. Furthermore, tissue damage was evaluated by total sialic acid levels in serum. Total cholesterol, triglycerides, sialic acid and thiobarbituric acid-reactive substances significantly increased whereas total antioxidant activity, reduced glutathione, total thiol levels significantly decreased in the hyperlipidaemic group compared to the control group. Pistachio consumption significantly decreased triglycerides and thiobarbituric acid-reactive substance levels and significantly increased total antioxidant activity in the hyperlipidaemic group. In conclusion, pistachio supplementation may improve blood lipids and ameliorate oxidative stress in experimental hyperlipidaemia, which may have beneficial applications in the prevention of cardiovascular diseases. However, its antioxidant mechanisms remain to be investigated.
Ballistreri, G., E. Arena, B. Fallico, 2009. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L. Molecules. 14:4358-4369.
This paper highlights, for the first time, the changes in the phenolics fraction (anthocyanins, flavonoids and stilbenes) and tocopherols of unpeeled Pistacia vera L. var. bianca with ripening, and the effect of the sun-drying process. The total polyphenol levels in pistachios, measured as mg of Gallic Acid Equivalent (GAE), were: 201 ± 10.1, 349 ± 18.3 and 184.7 ± 6.2 mg GAE/100 g DM in unripe, ripe and dried ripe samples, respectively. Most phenolics in ripe pistachios were found to be anthocyanins. They increased with ripening, while the sun drying process caused a susbtantial loss. Flavonoids found in all pistachio samples were daidzein, genistein, daidzin, quercetin, eriodictyol, luteolin, genistin and naringenin, which decreased both with ripening and drying. Before the drying process both unripe and ripe pistachios showed a higher content of transresveratrol than dried ripe samples. γ-Tocopherol was the major vitamin E isomer found in pistachios. The total content (of α- and γ-tocopherols) decreased, both during ripening and during the drying process. These results suggested that unpeeled pistachios can be considered an important source of phenolics, particularly of anthocyanins. Moreover, in order to preserve these healthy characteristics, new and more efficient drying processes should be adopted.