Archive

Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial.

Yaskolka, M.A., E. Rinott, G. Tsaban, H. Zelicha, A. Kaplan, P. Rosen,  I. Shelef, I. Youngster, A. Shalev,  M. Blüher, U. Ceglarek, M. Stumvoll, K. Tuohy, C. Diotallevi, U. Vrhovsek, F. Hu, M. Stampfer, I. Shai, 2021. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut. doi: 10.1136/gutjnl-2020-323106

Objective: To examine the effectiveness of green-Mediterranean (MED) diet, further restricted in red/ processed meat, and enriched with green plants and polyphenols on non-alcoholic fatty liver disease (NAFLD), reflected by intrahepatic fat (IHF) loss. Design: For the DIRECT-PLUS 18-month randomized clinical trial, we assigned 294 participants with abdominal obesity/dyslipidaemia into healthy dietary guidelines (HDG), MED and green-MED weight-loss diet groups, all accompanied by physical activity. Both isocaloric MED groups consumed 28 g/day walnuts (+440 mg/day polyphenols provided). The green-MED group further consumed green tea (3–4 cups/day) and Mankai (a Wolffia globosa aquatic plant strain; 100 g/ day frozen cubes) green shake (+1240 mg/day total polyphenols provided). IHF% 18-month changes were quantified continuously by proton magnetic resonance spectroscopy (MRS). Results: Participants (age=51 years; 88% men; body mass index=31.3 kg/m2; median IHF%=6.6%; mean=10.2%; 62% with NAFLD) had 89.8% 18 month retention-rate, and 78% had eligible follow-up MRS. Overall, NAFLD prevalence declined to: 54.8% (HDG), 47.9% (MED) and 31.5% (green-MED), p=0.012 between groups.  Despite similar moderate weight-loss in both MED groups, green-MED group achieved almost double IHF% loss (−38.9% proportionally), as compared with MED (−19.6% proportionally; p=0.035 weight loss adjusted) and HDG (−12.2% proportionally; p<0.001). After 18 months, both MED groups had significantly higher total plasma polyphenol levels versus HDG, with higher detection of Naringenin and 2-5-dihydroxybenzoic- acid in green-MED. Greater IHF% loss was independently associated with increased Mankai and walnuts intake, decreased red/processed meat consumption, improved serum folate and adipokines/lipids biomarkers, changes in microbiome composition (beta-diversity) and specific bacteria (p<0.05 for all). Conclusion: The new suggested strategy of green-Mediterranean diet, amplified with green plant-based proteins/polyphenols as Mankai, green tea, and walnuts, and restricted in red/processed meat can double IHF loss than other healthy nutritional strategies and reduce NAFLD in half.

Branched-Chain Amino Acids in relation to food preferences and insulin resistance in obese subjects consuming walnuts: A cross-over, randomized, double-blind, placebo-controlled inpatient physiology study.

Tuccinardi, D., N. Perakakis, O.M. Farr, J. Upadhyay, C.S. Mantzoros, 2021. Branched-Chain Amino Acids in relation to food preferences and insulin resistance in obese subjects consuming walnuts: A cross-over, randomized, double-blind, placebo-controlled inpatient physiology study. Clin Nutr. 40(5):3032-3036.

Background & aims: To assess whether the concentrations of circulating Branched-Chain Amino Acids (BCAAs) change after walnut consumption and, whether these changes are associated with alterations in markers of insulin resistance and food preferences. Methods: In a crossover, randomized, double-blind, placebo-controlled study, ten subjects participated in two 5-day inpatient study admissions, during which they had a smoothie containing 48 g walnuts or a macronutrient-matched placebo smoothie without nuts every morning. Between the two phases there was a 1-month washout period. Results: Fasting valine and isoleucine levels were reduced (p = .047 and p < .001) and beta-hydroxybutyrate levels were increased after 5-days of walnut consumption compared to placebo (p = .023). Fasting valine and isoleucine correlated with HOMA-IR while on walnut (r = 0.709, p = .032 and r = 0.679, p = .044). The postprandial area under the curve (AUC) of leucine in response to the smoothie consumption on day 5 was higher after walnut vs placebo (p = .023) and correlated negatively with the percentage of Kcal from carbohydrate and protein consumed during an ad libitum buffet meal consumed the same day for lunch (r = −0.661, p = .037; r = −0.628, p = .05, respectively). Conclusion: The fasting and post-absorptive profiles of BCAAs are differentially affected by walnut consumption. The reduction in fasting valine and isoleucine may contribute to the longer-term benefits of walnuts on insulin resistance, cardiovascular risk and mortality, whereas the increase in post-absorptive profiles with walnuts may influence food preference.

Dietary intake of walnut prevented Helicobacter pylori-associated gastric cancer through rejuvenation of chronic atrophic gastritis.

Park, J.M., Y.M. Han, Y.J. Park, K.B. Hahm, 2021. Dietary intake of walnut prevented Helicobacter pylori-associated gastric cancer through rejuvenation of chronic atrophic gastritis. J Clin Biochem Nutr. 68(1): 37–50.

The fact that Fat-1 transgenic mice producing n-3 polyunsaturated fatty acids via overexpressed 3-desaturase significantly mitigated Helicobacter pylori (H. pylori)-associated gastric tumorigenesis through rejuvenation of chronic atrophic gastritis (CAG) led us to study whether dietary intake of walnut plentiful of n-3 PUFAs can be nutritional intervention to prevent H. pylori-associated gastric cancer. In our model that H. pylori-initiated, high salt diet-promoted gastric carcinogenesis, pellet diet containing 100 mg/kg and 200 mg/kg walnut was administered up to 36 weeks. As results, control mice (24 weeks) developed significant chronic CAG, in which dietary walnuts significantly ameliorated chronic atrophic gastritis. Expressions of COX-2/PGE2/NF-κB/c-Jun, elevated in 24 weeks control group, were all significantly decreased with walnut (p<0.01). Tumor suppressive enzyme, 15-PGDH, was significantly preserved with walnut. Control mice (36 weeks) all developed significant tumors accompanied with severe CAG. However, significantly decreased tumorigenesis was noted in group treated with walnuts, in which expressions of COX-2/PGE2/NF-κB/IL-6/STAT3, all elevated in 36 weeks control group, were significantly decreased with walnut. Defensive proteins including HO-1, Nrf2, and SOCS-1 were significantly increased in walnut group. Proliferative index as marked with Ki-67 and PCNA was significantly regulated with walnut relevant to 15-PGDH preservation. Conclusively, walnut can be an anticipating nutritional intervention against H. pylori.

Transcriptome profiling analysis of the response to walnut polyphenol extract in Helicobacter pylori-infected cells.

Park, J.M., Y.M. Han, H.J. Lee, S.J. Hwang, S.J. Kim, K.B. Hahm, 2021. Transcriptome profiling analysis of the response to walnut polyphenol extract in Helicobacter pylori-infected cells. J Clin Biochem Nutr. doi.org/10.3164/jcbn.20-128.

Dietary intervention to prevent Helicobacter pylori (H. pylori)-associated gastric diseases seems to be ideal with no risk of bacterial resistance, safe long-term intervention, and correcting pathogenic mechanisms including rejuvenation of precancerous atrophic gastritis and anti-mutagenesis. A transcriptome as set of all RNAs transcribed by certain tissues or cells demonstrates gene functions and reveals the molecular mechanism of specific biological processes against diseases. Here, we have performed RNAseq and bioinformatic analysis to explain proof of concept that walnut intake can rescue from H. pylori infection and explore unidentified mode of actions of walnut polyphenol extract (WPE). As results, BIRC3, SLC25A4, f3 transcription, VEGFA, AZU1, HMOX1, RAB3A, RELBTNIP1, ETFB, INPP5J, PPME1, RHOB, TPI1, FOSL1, JUND.RELB, KLF2, MUC1, NDRG1, ALDOA, ENO1, PFKP, GPI, GDF15, and NRTN genes were newly discovered to be enriched with WPE, whereas CCR4, BLNK, CCR7, CXCR4, CDO1, KLSG1, SELE, RASGRP2, PIK3R3, TSPAN32, HOXC-AS3, HCG8, BTNL8, and CXCL3 genes as inhibitory targets by WPE in H. pylori infection. We identified additional genes what WPE afforded actions of avoiding H. pylori-driven onco-inflammation and rejuvenating precancerous atrophic gastritis. Conclusively, after applying RNAseq analysis in order to document walnut intake for precision medicine against H. pylori infection, significant transcriptomic profiling applicable for validation were drawn.

Liu, X., M. Guasch-Ferré, D.K. Tobias, Y. Li, 2021. Association of Walnut Consumption with Total and Cause-Specific Mortality and Life Expectancy in U.S. Adults.

Liu, X., M. Guasch-Ferré, D.K. Tobias, Y. Li, 2021. Association of Walnut Consumption with Total and Cause-Specific Mortality and Life Expectancy in U.S. Adults. Nutrients. 13(8), 2699. https://doi.org/10.3390/nu13082699

Walnut consumption is associated with health benefits. We aimed to (1) examine the association between walnut consumption and mortality and (2) estimate life expectancy in relation to walnut consumption in U.S. adults. We included 67,014 women of the Nurses’ Health Study (1998–2018) and 26,326 men of the Health Professionals Follow-up Study (1998–2018) who were free of cancer, heart disease, and stroke at baseline. We used Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). During up to 20 years of follow-up, we documented 30,263 deaths. The hazard ratios for total mortality across categories of walnut intake (servings/week), as compared to non-consumers, were 0.95 (95% confidence interval (CI), 0.91, 0.98) for <1 serving/week, 0.94 (95% CI, 0.89, 0.99) for 1 serving/week, 0.87 (95% CI, 0.82, 0.93) for 2–4 servings/week, and 0.86 (95% CI, 0.79, 0.93) for >=5 servings/week (p for trend <0.0001). A greater life expectancy at age 60 (1.30 years in women and 1.26 years in men) was observed among those who consumed walnuts more than 5 servings/week compared to non-consumers. Higher walnut consumption was associated with a lower risk of total and CVD mortality and a greater gained life expectancy among U.S. elder adults.

Neural correlates of future weight loss reveal a possible role for brain-gastric interactions.

Levakov, G., A. Kaplan, A. Yaskolka Meir, E. Rinott, G. Tsaban, H. Zelicha, N. Meiran, I. Shelef, I. Shai, G. Avidan, 2021. Neural correlates of future weight loss reveal a possible role for brain-gastric interactions. Neuroimage. 224:117403. doi: 10.1016/j.neuroimage.2020.117403.

Lifestyle dietary interventions are an essential practice in treating obesity, hence neural factors that may assist in predicting individual treatment success are of great significance. Here, in a prospective, open-label, three arms study, we examined the correlation between brain resting-state functional connectivity measured at baseline and weight loss following 6 months of lifestyle intervention in 92 overweight participants. We report a robust subnetwork composed mainly of sensory and motor cortical regions, whose edges correlated with future weight loss. This effect was found regardless of intervention group. Importantly, this main finding was further corroborated using a stringent connectivity-based prediction model assessed with cross-validation thus attesting to its robustness. The engagement of senso-motor regions in this subnetwork is consistent with the over-sensitivity to food cues theory of weight regulation. Finally, we tested an additional hypothesis regarding the role of brain-gastric interaction in this subnetwork, considering recent findings of a cortical network synchronized with gastric activity. Accordingly, we found a significant spatial overlap with the subnetwork reported in the present study. Moreover, power in the gastric basal electric frequency within our reported subnetwork negatively correlated with future weight loss. This finding was specific to the weight loss related subnetwork and to the gastric basal frequency. These findings should be further corroborated by combining direct recordings of gastric activity in future studies. Taken together, these intriguing results may have important implications for our understanding of the etiology of obesity and the mechanism of response to dietary intervention.

Walnuts, long-chain polyunsaturated fatty acids, and adolescent brain development: Protocol for the walnuts smart snack dietary intervention trial.

Julvez, J., F. Gignac, S. Fernández-Barrés, D. Romaguera, A. Sala-Vila, O.T. Ranzani, C. Persavento, A. Delgado, A. Carol, J. Torrent, J. Gonzalez, E. Roso, J. Barrera-Gómez, M. López-Vicente, R. Garcia-Esteban, O. Boucher, J. Forns, M. Burgaleta, N. Sebastián, J. Canals, V. Arija, X. Basagaña, E. Ros, J. Vendrell, J. Salas-Salvadó, J. Sunyer, 2021. Walnuts, long-chain polyunsaturated fatty acids, and adolescent brain development: Protocol for the walnuts smart snack dietary intervention trial. Front. Pediatr. 9:593847. doi: 10.3389/fped.2021.593847

Background: Adolescence, when the most complex behaviors are refined to adult sophistication, represents a major window of opportunity and vulnerability for neuropsychological development. To support and protect this complex and active brain growth, different nutritional components considered essential need to be acquired from the diet. For instance, omega-3 fatty acids are mainly obtained from seafood, seeds, and walnuts. Known for their rich lipid profile, walnuts contain sizable amounts of an essential fatty acid, alpha-linolenic acid (ALA), the vegetable omega-3 fatty acid that is the precursor of two longer-chain omega-3 polyunsaturated fatty acids (omega-3 PUFA): docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. While there is growing evidence of neuropsychological improvements in the young developing brain associated with omega-3 PUFA intake, few studies have examined whether consuming walnuts during adolescence entails similar beneficial effects. There is a need to further explore the ways in which walnuts influence youthful brain function, particularly for the long-term. Thus, we designed the WALNUTs study (WSS), a population-based randomized controlled trial conducted in adolescents in Barcelona, Spain. We hypothesize that walnut intake will increase omega-3 PUFA tissue availability (particularly ALA) to a level that enhances the neuropsychological development during adolescence. Methodology/Design: We conducted a 6-month population-based randomized controlled trial in teenagers (n = 800) and we aimed to determine the effectiveness of the intervention (four walnuts per day, or 30 kernel g, ~1.5g of ALA) in enhancing brain neuropsychological and socio-emotional development compared to a control group with no walnut intervention. Before randomization, different neuropsychological tests were recorded for all participants, and blood samples (in a subsample of participants) were collected to measure omega-3 PUFA levels at baseline, and all again, after randomization and the intervention. The data is now collected and we will conduct linear regression models to assess the effect of the intervention. Discussion: The WALNUTs (WSS) study results will allow us to better understand the role of plant-based omega-3 PUFA intake from regular walnut consumption on neuropsychological development during adolescence. Results could be translated into nutritional public health recommendations targeting teenagers.

Low-carbohydrate dietary pattern on glycemic outcomes trial (ADEPT) among individuals with elevated hemoglobin A1c: study protocol for a randomized controlled trial.

Dorans, K.S., L.A. Bazzano, L. Qi, H. Hua, L.J. Appel, J.M. Samet, J. Chen, K.T. Mills, B.T. Nguyen, M.J. O’Brien, I.U. Uwaifo, J. He, 2021. Low-carbohydrate dietary pattern on glycemic outcomes trial (ADEPT) among individuals with elevated hemoglobin A1c: study protocol for a randomized controlled trial. Trials 22, 108. https://doi.org/10.1186/s13063-020-05001-x.

Background: Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality globally. Strong evidence supports the importance of diet and other lifestyle factors in preventing T2DM. Among individuals with T2DM, low carbohydrate diets lead to decreases in hemoglobin A1c (HbA1c). However, research on the effects of low carbohydrate diets on glycemic outcomes among individuals not currently on glucose-lowering medications who have elevated HbA1c is limited. Methods: The objective of this randomized controlled trial is to study the effect of a healthy low-carbohydrate diet achieved through behavioral intervention and key food supplementation compared with usual diet on HbA1c and other metabolic risk factors among individuals with HbA1c from 6.0 to 6.9% who are not on glucose-lowering medications. In this parallel trial, 150 participants will be randomized to the intervention or control group for 6 months. The healthy low-carbohydrate diet target is < 40 g of net carbohydrates during the first 3 months and < 40 to 60 net grams for months 3 to 6. This diet is characterized by abundant unsaturated fat and protein, high-fiber foods such as non-starchy vegetables and nuts, and minimal refined carbohydrates. The primary outcome is the difference in HbA1c change from baseline to 6 months in the intervention compared with usual diet group. Secondary outcomes include differences between groups in 6-month changes in fasting glucose, systolic blood pressure, total-to-high-density lipoprotein (HDL) cholesterol ratio, and body weight. Exploratory outcomes include differences in 6-month changes in fasting insulin, homeostasis model assessment of insulin resistance, diastolic blood pressure, waist circumference, and 10-year cardiovascular disease risk. An intention-to-treat analysis will be used. Discussion: We expect that the results from this study will lead to new approaches for developing and implementing dietary approaches (other than the most commonly used reduced fat diet) that will substantially reduce risk of cardiometabolic disease among adults with or at high risk of T2DM. The study intervention involves behavioral counseling and promotes consumption of dietary components thought to reduce risk of cardiometabolic disease and has expected applicability in clinical practice.

Walnut intake, cognitive outcomes and risk factors: a systematic review and meta-analysis.

Cahoon, D., S.P. Shertukde, E.E. Avendano, J. Tanprasertsuk, T.M. Scott, E.J. Johnson, M. Chung, N. Nirmala, 2021. Walnut intake, cognitive outcomes and risk factors: a systematic review and meta-analysis. Annals of Medicine, 53:1, 971-997, DOI: 10.1080/07853890.2021.1925955.

Background: Walnuts contain nutrients that are associated with improved cognitive health. To our knowledge, no review has systematically examined the effects of walnuts on cognitive function and risk for cognitive decline. Objective To conduct a systematic review and meta-analysis evaluating the effects of walnut intake on cognition-related outcomes and risk-factors for cognitive decline in adults. Methods: Medline®, Commonwealth Agricultural Bureau, and Cochrane Central Register of Controlled Trials were searched for randomized controlled trials (RCTs) and observational studies published until April 2020 on walnut intake, cognition (e.g. cognitive function, stroke, and mood), and selected risk factors for cognitive decline (e.g. glucose homeostasis and inflammation). Risk-of-bias and strength-of-evidence assessments were conducted using standard validated tools. Random-effects meta-analyses were conducted when ≥3 studies reported quantitative data for each outcome. Results: 32 RCT and 7 observational study publications were included. Meta-analysis of cognition-related outcomes could not be conducted due to heterogeneity of tests. None of the 5 cognition RCTs found significant effects of walnuts on overall cognition, although 3 studies found improvements on subdomains and/or subgroups. All 7 observational studies found significant associations and a dose-response relationship between walnut intake and cognition-related outcomes. Meta-analyses of 27 RCTs reporting glucose homeostasis and inflammation outcomes, selected risk factors for cognitive decline, did not show significant effects of walnut intake. Conclusions: Due to the non-uniformity of tests for cognition-related outcomes, definitive conclusions regarding the effect of walnut consumption on cognition could not be reached. Additionally, evidence does not show associations between walnut intake and glucose homeostasis or inflammation, cognitive decline risk-factors. High-quality studies with standardized measures are needed to clarify the role of walnuts in cognitive health.

Are fatty nuts a weighty concern? A systematic review and meta-analysis and dose–response meta-regression of prospective cohorts and randomized controlled trials.

Nishi, S.K., E. Viguiliouk, S. Blanco Mejia, C.W.C. Kendall, R.P. Bazinet,  A.J. Hanley, E.M. Comelli, J. Salas Salvado, D.J.A. Jenkins, J.L. Sievenpiper, 2021. Are fatty nuts a weighty concern? A systematic review and meta-analysis and dose–response meta-regression of prospective cohorts and randomized controlled trials. Obes Rev. doi: 10.1111/obr.13330.

Nuts are recommended for cardiovascular health, yet concerns remain that nuts may contribute to weight gain due to their high energy density. A systematic review and meta-analysis of prospective cohorts and randomized controlled trials (RCTs) was conducted to update the evidence, provide a dose-response analysis, and assess differences in nut type, comparator and more in subgroup analyses. MEDLINE, EMBASE, and Cochrane were searched, along with manual searches. Data from eligible studies were pooled using meta-analysis methods. Interstudy heterogeneity was assessed (Cochran Q statistic) and quantified (I2 statistic). Certainty of the evidence was assessed by Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Six prospective cohort studies (7 unique cohorts, n = 569,910) and 86 RCTs (114 comparisons, n = 5873) met eligibility criteria. Nuts were associated with lower incidence of overweight/obesity (RR 0.93 [95% CI 0.88 to 0.98] P < 0.001, “moderate” certainty of evidence) in prospective cohorts. RCTs presented no adverse effect of nuts on body weight (MD 0.09 kg, [95% CI -0.09 to 0.27 kg] P < 0.001, “high” certainty of evidence). Meta-regression showed that higher nut intake was associated with reductions in body weight and body fat. Current evidence demonstrates the concern that nut consumption contributes to increased adiposity appears unwarranted.