Archive

Mixed Nuts as Healthy Snacks: Effect on Tryptophan Metabolism and Cardiovascular Risk Factors.

Yang, J., R. Lee, Z. Schulz, A. Hsu, J. Pai, S. Yang, S.M. Henning, J. Huang, J.P. Jacobs, D. Heber, Z. Li., 2023. Mixed Nuts as Healthy Snacks: Effect on Tryptophan Metabolism and Cardiovascular Risk Factors. Nutrients. 15, 569; https://doi.org/10.3390/nu15030569.

We recently demonstrated that the consumption of mixed tree nuts (MTNs) during caloric restriction decreased cardiovascular risk factors and increased satiety. Tryptophan (Trp) metabolism has been indicated as a factor in cardiovascular disease. Here, we investigated the effect of MTNs on Trp metabolism and the link to cardiovascular risk markers. Plasma and stool were collected from 95 overweight individuals who consumed either MTNs (or pretzels) daily as part of a hypocaloric weight loss diet for 12 weeks followed by an isocaloric weight maintenance program for an additional 12 weeks. Plasma and fecal samples were evaluated for Trp metabolites by LC–MS and for gut microbiota by 16S rRNA sequencing. Trp–kynurenine metabolism was reduced only in the MTNs group during weight loss (baseline vs. week 12). Changes in Trp–serotonin (week 24) and Trp–indole (week 12) metabolism from baseline were increased in the MTNs group compared to the pretzel group. Intergroup analysis between MTN and pretzel groups does not identify significant microbial changes as indicated by alpha diversity and beta diversity. Changes in the relative abundance of genus Paludicola during intervention are statistically different between the MTNs and pretzel group with p < 0.001 (q = 0.07). Our findings suggest that consumption of MTNs affects Trp host and microbial metabolism in overweight and obese subjects.

Nut consumption in association with overall mortality and recurrence/disease-specific mortality among long-term breast cancer survivors.

Cong, W., K. Gu, F. Wang, H. Cai, W. Zheng, P. Bao, X.-O. Shu, 2022. Nut consumption in association with overall mortality and recurrence/disease-specific mortality among long-term breast cancer survivors. International Journal of Cancer.doi.org/10.1002/ijc.33824.

High nut consumption is associated with reduced total and certain cause-specific mortality in general populations. However, its association with cancer outcomes among long-term breast cancer survivors remains unknown. We examined the associations of nut consumption (including peanuts and tree nuts), assessed at 5-year postdiagnosis, with overall survival (OS) and disease-free survival (DFS) among 3449 long-term breast cancer survivors from the Shanghai Breast Cancer Survival Study, applying Cox regression analysis. During a median follow-up of 8.27 years post dietary assessment, there were 374 deaths, including 252 breast cancer deaths. Among 3274 survivors without previous recurrence at the dietary assessment, 209 developed breast cancer-specific events, that is, recurrence, metastasis or breast cancer mortality. At 5-year post dietary assessment (ie, 10-year postdiagnosis), regular nut consumers had higher OS (93.7% vs 89.0%) and DFS (94.1% vs 86.2%) rates. After multivariable adjustment, nut consumption was positively associated with OS (Ptrend = .022) and DFS (Ptrend = .003) following a dose-response pattern, with hazard ratios (95% confidence interval) of 0.72 (0.52-1.05) for OS and 0.48 (0.31-0.73) for DFS, for participants with greater than median nut intake compared with nonconsumers. The associations did not vary by nut type. Stratified analyses showed that the associations were more evident among participants with a higher total energy intake for OS (Pinteraction = .02) and among participants with early stage (I-II) breast cancers for DFS (Pinteraction = .04). The nut-DFS associations were not modified by estrogen receptor/progesterone receptor status or other known prognostic factors. In conclusion, nut consumption was associated with better survival, particularly DFS, among long-term breast cancer survivors.

The effects of peanuts and tree nuts on lipid profile in type 2 diabetic patients: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies.

Xia, J.Y., J.H. Yu, D.F. Xu, C. Yang, H. Xia, G.J. Sun, 2021. The effects of peanuts and tree nuts on lipid profile in Type 2 diabetic patients: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies. Front. Nutr. https://doi.org/10.3389/fnut.2021.765571

Background: Type 2 diabetes mellitus was found to be associated with metabolic disorders, particularly abnormal glucose and lipid metabolism. Dietary food choices may have profound effects on blood lipids. The primary objective of this study was to examine the effects of peanuts and tree nuts intake on lipid profile in patients with type 2 diabetes. Methods: According to preferred reporting items for systematic reviews and meta-analysis guidelines, we performed a systematic search of randomized controlled clinical trials and systematic reviews published in PubMed, Web of Science, Embase, Scopus, and Cochrane library, from inception through June 2021. Studies in populations with type 2 diabetes, which compare nuts or peanuts to a controlled-diet group were included. We used the mean difference with 95% CIs to present estimates for continuous outcomes from individual studies. In addition, we used the GRADEpro tool to evaluate the overall quality of evidence. Results: Sixteen studies involving 1,041 participants were eligible for this review. The results showed that peanuts and tree nuts supplementation did not induce significant changes in low-density lipoprotein-cholesterol (LDL-C) (mean difference = −0.11; 95%CI: −0.25 – 0.03, p = 0.117) and high-density lipoprotein-cholesterol (HDL-C) (mean difference = 0.01; 95%CI: −0.01 – 0.04, p = 0.400) in patients with type 2 diabetics. In addition, we found that peanuts and tree nuts intake may cause a significantly reduction in total cholesterol (TC) (mean difference = −0.14; 95%CI: −0.26 – −0.02, p = 0.024) and triglyceride (TG) (mean difference = −0.10; 95%CI: −0.17 – −0.02, p = 0.010). In the subgroup analysis, a significantly greater reduction in TC was observed in studies which duration was <12 weeks (mean difference = −0.22; 95%CI: −0.37 – −0.08, p = 0.002). The quality of the body of evidence was “moderate” for TC and TG, the quality of evidence for LDL-C and HDL-C were “low.” Conclusion: Our findings suggest that consuming peanuts and tree nuts might be beneficial to lower TC concentration and TG concentration in type 2 diabetics subjects. Furthermore, peanuts and tree nuts supplementation could be considered as a part of a healthy lifestyle in the management of blood lipids in patients with type 2 diabetes. Given some limits observed in the current studies, more well-designed trials are still needed.

Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial.

Yaskolka, M.A., E. Rinott, G. Tsaban, H. Zelicha, A. Kaplan, P. Rosen,  I. Shelef, I. Youngster, A. Shalev,  M. Blüher, U. Ceglarek, M. Stumvoll, K. Tuohy, C. Diotallevi, U. Vrhovsek, F. Hu, M. Stampfer, I. Shai, 2021. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut. doi: 10.1136/gutjnl-2020-323106

Objective: To examine the effectiveness of green-Mediterranean (MED) diet, further restricted in red/ processed meat, and enriched with green plants and polyphenols on non-alcoholic fatty liver disease (NAFLD), reflected by intrahepatic fat (IHF) loss. Design: For the DIRECT-PLUS 18-month randomized clinical trial, we assigned 294 participants with abdominal obesity/dyslipidaemia into healthy dietary guidelines (HDG), MED and green-MED weight-loss diet groups, all accompanied by physical activity. Both isocaloric MED groups consumed 28 g/day walnuts (+440 mg/day polyphenols provided). The green-MED group further consumed green tea (3–4 cups/day) and Mankai (a Wolffia globosa aquatic plant strain; 100 g/ day frozen cubes) green shake (+1240 mg/day total polyphenols provided). IHF% 18-month changes were quantified continuously by proton magnetic resonance spectroscopy (MRS). Results: Participants (age=51 years; 88% men; body mass index=31.3 kg/m2; median IHF%=6.6%; mean=10.2%; 62% with NAFLD) had 89.8% 18 month retention-rate, and 78% had eligible follow-up MRS. Overall, NAFLD prevalence declined to: 54.8% (HDG), 47.9% (MED) and 31.5% (green-MED), p=0.012 between groups.  Despite similar moderate weight-loss in both MED groups, green-MED group achieved almost double IHF% loss (−38.9% proportionally), as compared with MED (−19.6% proportionally; p=0.035 weight loss adjusted) and HDG (−12.2% proportionally; p<0.001). After 18 months, both MED groups had significantly higher total plasma polyphenol levels versus HDG, with higher detection of Naringenin and 2-5-dihydroxybenzoic- acid in green-MED. Greater IHF% loss was independently associated with increased Mankai and walnuts intake, decreased red/processed meat consumption, improved serum folate and adipokines/lipids biomarkers, changes in microbiome composition (beta-diversity) and specific bacteria (p<0.05 for all). Conclusion: The new suggested strategy of green-Mediterranean diet, amplified with green plant-based proteins/polyphenols as Mankai, green tea, and walnuts, and restricted in red/processed meat can double IHF loss than other healthy nutritional strategies and reduce NAFLD in half.

Branched-Chain Amino Acids in relation to food preferences and insulin resistance in obese subjects consuming walnuts: A cross-over, randomized, double-blind, placebo-controlled inpatient physiology study.

Tuccinardi, D., N. Perakakis, O.M. Farr, J. Upadhyay, C.S. Mantzoros, 2021. Branched-Chain Amino Acids in relation to food preferences and insulin resistance in obese subjects consuming walnuts: A cross-over, randomized, double-blind, placebo-controlled inpatient physiology study. Clin Nutr. 40(5):3032-3036.

Background & aims: To assess whether the concentrations of circulating Branched-Chain Amino Acids (BCAAs) change after walnut consumption and, whether these changes are associated with alterations in markers of insulin resistance and food preferences. Methods: In a crossover, randomized, double-blind, placebo-controlled study, ten subjects participated in two 5-day inpatient study admissions, during which they had a smoothie containing 48 g walnuts or a macronutrient-matched placebo smoothie without nuts every morning. Between the two phases there was a 1-month washout period. Results: Fasting valine and isoleucine levels were reduced (p = .047 and p < .001) and beta-hydroxybutyrate levels were increased after 5-days of walnut consumption compared to placebo (p = .023). Fasting valine and isoleucine correlated with HOMA-IR while on walnut (r = 0.709, p = .032 and r = 0.679, p = .044). The postprandial area under the curve (AUC) of leucine in response to the smoothie consumption on day 5 was higher after walnut vs placebo (p = .023) and correlated negatively with the percentage of Kcal from carbohydrate and protein consumed during an ad libitum buffet meal consumed the same day for lunch (r = −0.661, p = .037; r = −0.628, p = .05, respectively). Conclusion: The fasting and post-absorptive profiles of BCAAs are differentially affected by walnut consumption. The reduction in fasting valine and isoleucine may contribute to the longer-term benefits of walnuts on insulin resistance, cardiovascular risk and mortality, whereas the increase in post-absorptive profiles with walnuts may influence food preference.

Dietary intake of walnut prevented Helicobacter pylori-associated gastric cancer through rejuvenation of chronic atrophic gastritis.

Park, J.M., Y.M. Han, Y.J. Park, K.B. Hahm, 2021. Dietary intake of walnut prevented Helicobacter pylori-associated gastric cancer through rejuvenation of chronic atrophic gastritis. J Clin Biochem Nutr. 68(1): 37–50.

The fact that Fat-1 transgenic mice producing n-3 polyunsaturated fatty acids via overexpressed 3-desaturase significantly mitigated Helicobacter pylori (H. pylori)-associated gastric tumorigenesis through rejuvenation of chronic atrophic gastritis (CAG) led us to study whether dietary intake of walnut plentiful of n-3 PUFAs can be nutritional intervention to prevent H. pylori-associated gastric cancer. In our model that H. pylori-initiated, high salt diet-promoted gastric carcinogenesis, pellet diet containing 100 mg/kg and 200 mg/kg walnut was administered up to 36 weeks. As results, control mice (24 weeks) developed significant chronic CAG, in which dietary walnuts significantly ameliorated chronic atrophic gastritis. Expressions of COX-2/PGE2/NF-κB/c-Jun, elevated in 24 weeks control group, were all significantly decreased with walnut (p<0.01). Tumor suppressive enzyme, 15-PGDH, was significantly preserved with walnut. Control mice (36 weeks) all developed significant tumors accompanied with severe CAG. However, significantly decreased tumorigenesis was noted in group treated with walnuts, in which expressions of COX-2/PGE2/NF-κB/IL-6/STAT3, all elevated in 36 weeks control group, were significantly decreased with walnut. Defensive proteins including HO-1, Nrf2, and SOCS-1 were significantly increased in walnut group. Proliferative index as marked with Ki-67 and PCNA was significantly regulated with walnut relevant to 15-PGDH preservation. Conclusively, walnut can be an anticipating nutritional intervention against H. pylori.

Transcriptome profiling analysis of the response to walnut polyphenol extract in Helicobacter pylori-infected cells.

Park, J.M., Y.M. Han, H.J. Lee, S.J. Hwang, S.J. Kim, K.B. Hahm, 2021. Transcriptome profiling analysis of the response to walnut polyphenol extract in Helicobacter pylori-infected cells. J Clin Biochem Nutr. doi.org/10.3164/jcbn.20-128.

Dietary intervention to prevent Helicobacter pylori (H. pylori)-associated gastric diseases seems to be ideal with no risk of bacterial resistance, safe long-term intervention, and correcting pathogenic mechanisms including rejuvenation of precancerous atrophic gastritis and anti-mutagenesis. A transcriptome as set of all RNAs transcribed by certain tissues or cells demonstrates gene functions and reveals the molecular mechanism of specific biological processes against diseases. Here, we have performed RNAseq and bioinformatic analysis to explain proof of concept that walnut intake can rescue from H. pylori infection and explore unidentified mode of actions of walnut polyphenol extract (WPE). As results, BIRC3, SLC25A4, f3 transcription, VEGFA, AZU1, HMOX1, RAB3A, RELBTNIP1, ETFB, INPP5J, PPME1, RHOB, TPI1, FOSL1, JUND.RELB, KLF2, MUC1, NDRG1, ALDOA, ENO1, PFKP, GPI, GDF15, and NRTN genes were newly discovered to be enriched with WPE, whereas CCR4, BLNK, CCR7, CXCR4, CDO1, KLSG1, SELE, RASGRP2, PIK3R3, TSPAN32, HOXC-AS3, HCG8, BTNL8, and CXCL3 genes as inhibitory targets by WPE in H. pylori infection. We identified additional genes what WPE afforded actions of avoiding H. pylori-driven onco-inflammation and rejuvenating precancerous atrophic gastritis. Conclusively, after applying RNAseq analysis in order to document walnut intake for precision medicine against H. pylori infection, significant transcriptomic profiling applicable for validation were drawn.

Liu, X., M. Guasch-Ferré, D.K. Tobias, Y. Li, 2021. Association of Walnut Consumption with Total and Cause-Specific Mortality and Life Expectancy in U.S. Adults.

Liu, X., M. Guasch-Ferré, D.K. Tobias, Y. Li, 2021. Association of Walnut Consumption with Total and Cause-Specific Mortality and Life Expectancy in U.S. Adults. Nutrients. 13(8), 2699. https://doi.org/10.3390/nu13082699

Walnut consumption is associated with health benefits. We aimed to (1) examine the association between walnut consumption and mortality and (2) estimate life expectancy in relation to walnut consumption in U.S. adults. We included 67,014 women of the Nurses’ Health Study (1998–2018) and 26,326 men of the Health Professionals Follow-up Study (1998–2018) who were free of cancer, heart disease, and stroke at baseline. We used Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). During up to 20 years of follow-up, we documented 30,263 deaths. The hazard ratios for total mortality across categories of walnut intake (servings/week), as compared to non-consumers, were 0.95 (95% confidence interval (CI), 0.91, 0.98) for <1 serving/week, 0.94 (95% CI, 0.89, 0.99) for 1 serving/week, 0.87 (95% CI, 0.82, 0.93) for 2–4 servings/week, and 0.86 (95% CI, 0.79, 0.93) for >=5 servings/week (p for trend <0.0001). A greater life expectancy at age 60 (1.30 years in women and 1.26 years in men) was observed among those who consumed walnuts more than 5 servings/week compared to non-consumers. Higher walnut consumption was associated with a lower risk of total and CVD mortality and a greater gained life expectancy among U.S. elder adults.

Neural correlates of future weight loss reveal a possible role for brain-gastric interactions.

Levakov, G., A. Kaplan, A. Yaskolka Meir, E. Rinott, G. Tsaban, H. Zelicha, N. Meiran, I. Shelef, I. Shai, G. Avidan, 2021. Neural correlates of future weight loss reveal a possible role for brain-gastric interactions. Neuroimage. 224:117403. doi: 10.1016/j.neuroimage.2020.117403.

Lifestyle dietary interventions are an essential practice in treating obesity, hence neural factors that may assist in predicting individual treatment success are of great significance. Here, in a prospective, open-label, three arms study, we examined the correlation between brain resting-state functional connectivity measured at baseline and weight loss following 6 months of lifestyle intervention in 92 overweight participants. We report a robust subnetwork composed mainly of sensory and motor cortical regions, whose edges correlated with future weight loss. This effect was found regardless of intervention group. Importantly, this main finding was further corroborated using a stringent connectivity-based prediction model assessed with cross-validation thus attesting to its robustness. The engagement of senso-motor regions in this subnetwork is consistent with the over-sensitivity to food cues theory of weight regulation. Finally, we tested an additional hypothesis regarding the role of brain-gastric interaction in this subnetwork, considering recent findings of a cortical network synchronized with gastric activity. Accordingly, we found a significant spatial overlap with the subnetwork reported in the present study. Moreover, power in the gastric basal electric frequency within our reported subnetwork negatively correlated with future weight loss. This finding was specific to the weight loss related subnetwork and to the gastric basal frequency. These findings should be further corroborated by combining direct recordings of gastric activity in future studies. Taken together, these intriguing results may have important implications for our understanding of the etiology of obesity and the mechanism of response to dietary intervention.

Walnuts, long-chain polyunsaturated fatty acids, and adolescent brain development: Protocol for the walnuts smart snack dietary intervention trial.

Julvez, J., F. Gignac, S. Fernández-Barrés, D. Romaguera, A. Sala-Vila, O.T. Ranzani, C. Persavento, A. Delgado, A. Carol, J. Torrent, J. Gonzalez, E. Roso, J. Barrera-Gómez, M. López-Vicente, R. Garcia-Esteban, O. Boucher, J. Forns, M. Burgaleta, N. Sebastián, J. Canals, V. Arija, X. Basagaña, E. Ros, J. Vendrell, J. Salas-Salvadó, J. Sunyer, 2021. Walnuts, long-chain polyunsaturated fatty acids, and adolescent brain development: Protocol for the walnuts smart snack dietary intervention trial. Front. Pediatr. 9:593847. doi: 10.3389/fped.2021.593847

Background: Adolescence, when the most complex behaviors are refined to adult sophistication, represents a major window of opportunity and vulnerability for neuropsychological development. To support and protect this complex and active brain growth, different nutritional components considered essential need to be acquired from the diet. For instance, omega-3 fatty acids are mainly obtained from seafood, seeds, and walnuts. Known for their rich lipid profile, walnuts contain sizable amounts of an essential fatty acid, alpha-linolenic acid (ALA), the vegetable omega-3 fatty acid that is the precursor of two longer-chain omega-3 polyunsaturated fatty acids (omega-3 PUFA): docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. While there is growing evidence of neuropsychological improvements in the young developing brain associated with omega-3 PUFA intake, few studies have examined whether consuming walnuts during adolescence entails similar beneficial effects. There is a need to further explore the ways in which walnuts influence youthful brain function, particularly for the long-term. Thus, we designed the WALNUTs study (WSS), a population-based randomized controlled trial conducted in adolescents in Barcelona, Spain. We hypothesize that walnut intake will increase omega-3 PUFA tissue availability (particularly ALA) to a level that enhances the neuropsychological development during adolescence. Methodology/Design: We conducted a 6-month population-based randomized controlled trial in teenagers (n = 800) and we aimed to determine the effectiveness of the intervention (four walnuts per day, or 30 kernel g, ~1.5g of ALA) in enhancing brain neuropsychological and socio-emotional development compared to a control group with no walnut intervention. Before randomization, different neuropsychological tests were recorded for all participants, and blood samples (in a subsample of participants) were collected to measure omega-3 PUFA levels at baseline, and all again, after randomization and the intervention. The data is now collected and we will conduct linear regression models to assess the effect of the intervention. Discussion: The WALNUTs (WSS) study results will allow us to better understand the role of plant-based omega-3 PUFA intake from regular walnut consumption on neuropsychological development during adolescence. Results could be translated into nutritional public health recommendations targeting teenagers.