Archive

Health benefits of nut consumption in middle‐aged and elderly population.

Rusu, M.E., A. Mocan, I.C.F.R. Ferreira, D.-S. Popa, 2019. Health benefits of nut consumption in middle‐aged and elderly population. Antioxidants. 8, 302; doi:10.3390/antiox8080302.

Aging is considered the major risk factor for most chronic disorders. Oxidative stress and chronic inflammation are two major contributors for cellular senescence, downregulation of stress response pathways with a decrease of protective cellular activity and accumulation of cellular damage, leading in time to age‐related diseases. This review investigated the most recent clinical trials and cohort studies published in the last ten years, which presented the influence of tree nut and peanut antioxidant diets in preventing or delaying age‐related diseases in middle‐aged and elderly subjects (≥55 years old). Tree nut and peanut ingestion has the possibility to influence blood lipid count, biochemical and anthropometric parameters, endothelial function and inflammatory biomarkers, thereby positively affecting cardiometabolic morbidity and mortality, cancers, and cognitive disorders, mainly through the nuts’ healthy lipid profile and antioxidant and anti-inflammatory mechanisms of actions. Clinical evidence and scientific findings demonstrate the importance of diets characterized by a high intake of nuts and emphasize their potential in preventing age‐related diseases, validating the addition of tree nuts and peanuts in the diet of older adults. Therefore, increased consumption of bioactive antioxidant compounds from nuts clearly impacts many risk factors related to aging and can extend health span and lifespan.

Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation.

Muralidharan J, S. Galiè, P. Hernández-Alonso, M. Bulló, J. Salas-Salvadó, 2019. Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation. Front. Nutr. 6:157. doi: 10.3389/fnut.2019.00157.

Diet is advocated as a key factor influencing gut microbiota. Several studies have focused on the effect of different carbohydrates, mainly fiber, on gut microbiota. However, what remains to be elucidated is the impact of a key component of diet that is widely debated upon: dietary fats. This review highlights the importance of understanding the source, quality, and type of fats that could differentially modify the intestinal microbiome. Fats from plant-based sources such as nuts, or vegetable oils have shown positive alterations in gut microbiota biodiversity both in in vivo and in vitro studies. Nuts and other plant-based
fat sources, dietary patterns (e.g., Mediterranean diet) rich in polyunsaturated and monounsaturated fats and, in some cases, polyphenols, and other phytochemicals, have been associated with increased bacterial diversity, as well beneficial butyrate-producing bacteria imparting a positive metabolic influence. It is with this interest, this narrative review brings together evidences on different plant-based fat sources, dietary patterns rich in vegetable fats, and associated changes in gut microbiota.

Keywords: gut microbiota, plant-based fats, nuts, vegetable oils, Mediterranean diet

Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An updated review based on meta-analyses.

Kim, Y., J.B. Keogh, P.M. Clifton, 2019. Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An updated review based on meta-analyses. Int. J. Environ. Res. Public Health. 16, 4957; doi:10.3390/ijerph16244957.

Aim. We aimed to determine if nut consumption decreases mortality and/or the risk of cardiometabolic diseases based on updated meta-analyses of epidemiological and intervention studies. Methods. An updated electronic search was conducted in PubMed/MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and the Cochrane Library databases for original meta-analyses to investigate the effects of nut consumption on cardiometabolic disease in humans. Results. Seven new meta-analyses were included in this updated review. Findings similar to our previous review were observed, showing that nut consumption significantly decreased cardiovascular disease (CVD) mortality (-19% to -25%; n = 4), coronary heart disease (CHD) mortality (-24% to -30%; n = 3), stroke mortality (-17% to -18%; n = 3), CVD incidence (-15% to -19 %; n = 4), CHD [or coronary artery disease (CAD)] incidence (-17% to -34%; n = 8), and stroke incidence (-10% to -11%; n = 6) comparing high with low categories of nut consumption. Fasting glucose levels (0.08 to 0.15 mmol/L; n = 6), total cholesterol (TC; 0.021 to 0.30 mmol/L; n = 10), and low-density lipoprotein cholesterol (LDL-C; 0.017 to 0.26 mmol/L; n = 10) were significantly decreased with nut consumption compared with control diets. Body weight and blood pressure were not significantly affected by nut consumption. Conclusion. Nut consumption appears to exert a protective effect on cardiometabolic disease, possibly through improved concentrations of fasting glucose, total cholesterol, and LDL-C.

Food groups in dietary prevention of Type 2 diabetes.

Basiak-Rasała, A., D. Różańska, K. Zatońska, 2019. Food groups in dietary prevention of Type 2 diabetes. Rocz Panstw Zakl Hig 70(4):347-357.

According to the World Health Organization diabetes will be the seventh leading cause of death worldwide in 2030. Majority of diabetic patients suffer from type 2 diabetes (T2DM), which is mostly avoidable. The most important modifiable risk factors of type 2 diabetes are: overweight and obesity, improper diet, sedentary lifestyle and tobacco smoking. Even in prediabetic state, improving diet and physical activity can slow down or even stop progression to diabetes. In the view of health burden of diabetes it is essential to thoroughly investigate the risk factors and develop more specific preventive strategies. Recently published studies focus on food groups rather than individual products to assess the link between nutrition and risk of type 2 diabetes. Identifying food groups of possible beneficial and deleterious effect on the risk of type 2 diabetes could facilitate the dietary counselling. The aim of the overview is to summarize the possible association between consumption of food groups on the risk of type 2 diabetes on the basis of available literature. Observations from studies and meta-analyses indicate on an inverse association between consumption of fresh vegetables and fruit, whole grains, lean dairy, fish, nuts and the risk of type 2 diabetes. Food groups that seemed to increase the risk of type 2 diabetes are: red and processed meat, refined grains, sugar-sweetened beverages. It is important to note, that no individual nutrients, but diverse dietary pattern, composed of every recommended food group in adequate amounts can contribute to healthy lifestyle and T2DM prevention.

Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese subjects: a cross‐over, randomized, double‐blinded, controlled inpatient physiology study.

Tuccinardi, D., O.M. Farr, J. Upadhyay, S.M. Oussaada, M.I. Klapa, M. Candela, S. Rampelli, S. Lehoux, I. Lázaro, A. Sala‐Vila, P. Brigidi, R.D. Cummings, C.S. Mantzoros, 2019. Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese subjects: a cross‐over, randomized, double‐blinded, controlled inpatient physiology study. Diabetes Obes Metab. 21(9):2086-2095.

Aims: To assess the effects of walnuts on cardiometabolic outcomes in obese subjects and to explore underlying mechanisms using novel methods including metabolomic, lipidomic, glycomic, and microbiome analysis integrated with lipid particle fractionation, appetite-regulating hormones and hemodynamic measurements. Materials and Methods: 10 obese subjects were enrolled in this cross-over, randomized, double-blind, placebo-controlled clinical trial. Patients participated in two 5-day inpatient stays during which they consumed a smoothie containing 48g walnuts or a macronutrient-matched placebo smoothie without nuts, with a one-month washout period between the two visits. Results: Walnut consumption improved aspects of the lipid profile, i.e. reduced fasting small and dense LDL particles (p<.02) and increased postprandial large HDL particles (p<.01). Lipoprotein Insulin Resistance Score, glucose and insulin AUC decreased significantly after walnut consumption (p<.01, p<.02, p<.04, respectively). Consuming walnuts significantly increased 10 N-glycans, with 8 of them carrying a fucose core. Lipidomic analysis showed a robust reduction in harmful ceramides, hexosylceramides and sphingomyelins, which have been shown to mediate effects on cardiometabolic risk. Peptide YY AUC significantly increased after walnut consumption (p<.03). No major significant changes in hemodynamic, metabolomic analysis or in host health-promoting bacteria such as Faecalibacterium were found. Conclusions: These data provide a more comprehensive mechanistic perspective of the effect of dietary walnut consumption on cardiometabolic parameters. Lipidomic and lipid nuclear magnetic resonance spectroscopy analysis showed an early but significant reduction in ceramides and other atherogenic lipids with walnut consumption that may explain the longer-term benefits of walnuts on insulin resistance, cardiovascular risk and mortality.

Replacing saturated fat with walnuts or vegetable oils improves central blood pressure and serum lipids in adults at risk for cardiovascular disease: a randomized controlled-feeding trial.

Tindall, A.M., K.S. Petersen, A.C. Skulas-Ray, C.K. Richter, D.N. Proctor, P.M. Kris-Etherton, 2019. Replacing saturated fat with walnuts or vegetable oils improves central blood pressure and serum lipids in adults at risk for cardiovascular disease: a randomized controlled-feeding trial. J Am Heart Assoc. 8(9):e011512. doi: 10.1161/JAHA.118.011512

Background: Walnuts have beneficial effects on cardiovascular risk factors, but it is unclear whether these effects are attributable to the fatty acid ( FA ) content, including α-linolenic acid ( ALA ), and/or bioactives. Methods and Results: A randomized, controlled, 3-period, crossover, feeding trial was conducted in individuals at risk for cardiovascular disease (n=45). Following a 2-week standard Western diet run-in (12% saturated FAs [ SFA ], 7% polyunsaturated FAs, 12% monounsaturated FAs), participants consumed 3 isocaloric weight-maintenance diets for 6 weeks each: a walnut diet ( WD ; 7% SFA , 16% polyunsaturated FAs, 3% ALA , 9% monounsaturated FAs); a walnut FA -matched diet; and an oleic acid-replaced- ALA diet (7% SFA , 14% polyunsaturated FAs, 0.5% ALA , 12% monounsaturated FAs), which substituted the amount of ALA from walnuts in the WD with oleic acid. This design enabled evaluation of the effects of whole walnuts versus constituent components. The primary end point, central systolic blood pressure, was unchanged, and there were no significant changes in arterial stiffness. There was a treatment effect ( P=0.04) for central diastolic blood pressure; there was a greater change following the WD versus the oleic acid-replaced-ALA diet (-1.78±1.0 versus 0.15±0.7 mm Hg, P=0.04). There were no differences between the WD and the walnut fatty acid-matched diet (-0.22±0.8 mm Hg, P=0.20) or the walnut FA-matched and oleic acid-replaced-ALA diets ( P=0.74). The WD significantly lowered brachial and central mean arterial pressure. All diets lowered total cholesterol, LDL (low-density lipoprotein) cholesterol, HDL (high-density lipoprotein) cholesterol, and non- HDL cholesterol. Conclusions: Cardiovascular benefits occurred with all moderate-fat, high-unsaturated-fat diets. As part of a low- SFA diet, the greater improvement in central diastolic blood pressure following the WD versus the oleic acid-replaced-ALA diet indicates benefits of walnuts as a whole-food replacement for SFA.

Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease.

Tindall, A.M., C.J. McLimans, K.S. Petersen, P.M. Kris-Etherton, R. Lamendella, 2019. Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr. 150(4):806-817.

Background: It is unclear whether the favorable effects of walnuts on the gut microbiota are attributable to the fatty acids, including α-linolenic acid (ALA), and/or the bioactive compounds and fiber. Objective: This study examined between-diet gut bacterial differences in individuals at increased cardiovascular risk following diets that replace SFAs with walnuts or vegetable oils.Methods: Forty-two adults at cardiovascular risk were included in a randomized, crossover, controlled-feeding trial that provided a 2-wk standard Western diet (SWD) run-in and three 6-wk isocaloric study diets: a diet containing whole walnuts (WD; 57-99 g/d walnuts; 2.7% ALA), a fatty acid-matched diet devoid of walnuts (walnut fatty acid-matched diet; WFMD; 2.6% ALA), and a diet replacing ALA with oleic acid without walnuts (oleic acid replaces ALA diet; ORAD; 0.4% ALA). Fecal samples were collected following the run-in and study diets to assess gut microbiota with 16S rRNA sequencing and Qiime2 for amplicon sequence variant picking. Results: Subjects had elevated BMI (30 ± 1 kg/m2), blood pressure (121 ± 2/77 ± 1 mmHg), and LDL cholesterol (120 ± 5 mg/dL). Following the WD, Roseburia [relative abundance (RA) = 4.2%, linear discriminant analysis (LDA) = 4], Eubacterium eligensgroup (RA = 1.4%, LDA = 4), LachnospiraceaeUCG001 (RA = 1.2%, LDA = 3.2), Lachnospiraceae UCG004 (RA = 1.0%, LDA = 3), and Leuconostocaceae (RA = 0.03%, LDA = 2.8) were most abundant relative to taxa in the SWD (P ≤ 0.05 for all). The WD was also enriched in Gordonibacter relative to the WFMD. Roseburia (3.6%, LDA = 4) and Eubacterium eligensgroup (RA = 1.5%, LDA = 3.4) were abundant following the WFMD, and Clostridialesvadin BB60group (RA = 0.3%, LDA = 2) and gutmetagenome (RA = 0.2%, LDA = 2) were most abundant following the ORAD relative to the SWD (P ≤ 0.05 for all). Lachnospiraceae were inversely correlated with blood pressure and lipid/lipoprotein measurements following the WD. Conclusions: The results indicate similar enrichment of Roseburia following the WD and WFMD, which could be explained by the fatty acid composition. Gordonibacter enrichment and the inverse association between Lachnospiraceae and cardiovascular risk factors following the WD suggest that the gut microbiota may contribute to the health benefits of walnut consumption in adults at cardiovascular risk. This trial was registered at clinicaltrials.gov as NCT02210767.

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model.

Shin, P.K., Y. Zoh, J. Choi, M.S. Kim,Y. Kim, S.W. Choi, 2019. Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model. Nutr Res Pract. 13(1):58-63.

Background/Objectives: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. Materials/Methods: CD133+CD44+ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and 40 µg/mL for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA (ddCt). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA (dCt). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. Results: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner (5.16 ± 0.13 at 0 µg/mL, 4.79 ± 0.12 at 10 µg/mL 3.24 ± 0.08 at 20 µg/mL and 3.99 ± 0.09 at 40 µg/mL; P = 0.0276). Telomerase activities concurrently decreased with telomere length (1.47 ± 0.04, 1.09 ± 0.01, 0.76 ± 0.08, and 0.88 ± 0.06; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. Conclusions: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.

Relationship between long‐chain omega‐3 polyunsaturated fatty acid intake and ankle brachial index, pulse wave velocity and resting heart rate in a sample of overweight adults: A secondary analysis of baseline data in the HealthTrack study.

Senevirathne, A., E. Neale, G. Peoples, L. Tapsell, 2019. Relationship between long‐chain omega‐3 polyunsaturated fatty acid intake and ankle brachial index, pulse wave velocity and resting heart rate in a sample of overweight adults: A secondary analysis of baseline data in the HealthTrack study. Nutr Diet. 76(1):95-103.

Aim: The present study aimed to explore the association between dietary long-chain omega-3 polyunsaturated fatty acid (LCn3PUFA) intake and cardiovascular risk indicators (ankle brachial index, resting heart rate and brachial-ankle pulse wave velocity) in a clinical sample of overweight and obese participants volunteering for a weight loss trial. Methods: This was a secondary analysis of baseline data from the HealthTrack study (n = 351). LCn3PUFA intake was calculated via a diet history and the association with ankle brachial index, resting heart rate and brachio-ankle pulse wave velocity was explored using linear regression after controlling for covariates. Results: LCn3PUFA intake was inversely associated with ankle brachial index (R(2) change = 0.021, F change (1, 339) = 8.864, P < 0.05) and resting heart rate (R(2) change = 0.014, F change (1, 342) = 5.337, P < 0.05) but not with brachio-ankle pulse wave velocity (R(2) change = 0.001, F change (1, 339) = 0.725, P > 0.05). Conclusions: In this clinical sample of overweight adults, LCn3PUFA consumption was significantly associated with a lower resting heart rate, adding to the current evidence on the potential benefits of LCn3PUFA consumption. It also supports the value of targeting a diet rich in this nutrient when planning future dietetic approaches. Relationships with ankle brachial index and pulse wave velocity require further investigation. Future research should assess the effect of changes in dietary LCn3PUFA intake on novel cardiovascular risk indicators.

The resulting variation in nutrient intake with the inclusion of walnuts in the diets of adults at risk for type 2 diabetes: A randomized, controlled, crossover trial.

Njike, V.Y., V.C. Costales, P. Petraro, A. Annam, N. Yarandi, D.L. Katz, 2019. The resulting variation in nutrient intake with the inclusion of walnuts in the diets of adults at risk for type 2 diabetes: A randomized, controlled, crossover trial. Am J Health Promot. 33(3):430-438.

Purpose: We previously demonstrated that including walnuts in the diets of adults at risk for type 2 diabetes mellitus (T2DM) led to improved overall diet quality. This report examines the specific changes in their nutrient intake. Design: This was a randomized, controlled, modified Latin square parallel design trial with 2 treatment arms. Participants were randomized to walnut intake with, or without, dietary advice to regulate caloric intake. Within each treatment arm, they were further randomized to one of 2 sequence permutations (walnut-included/walnut-excluded or walnut-excluded/walnut-included diet), with a 3-month washout between treatment phases. Setting: Community hospital in Lower Naugatuck Valley in Connecticut. Participants: Cohort of 112 participants (31 men and 81 women) at risk for T2DM. Intervention: Participants included 56 g (366 kcal) of walnuts in their daily diets for 6 months. Measures: Nutrient intake was assessed using web-based Automated Self-Administered 24-Hour Dietary Assessment. Analysis: Data were analyzed using generalized linear models. Results: Walnut inclusion led to increased intake of total fat, calcium, magnesium, thiamin, total saturated fatty acids, and monounsaturated and polyunsaturated fatty acids (379.0 ± 90.3 g vs -136.5 ± 92.7 g, P < .01; 230.7 ± 114.2 mg vs -95.2 ± 117.4 mg, P = .05; 111.0 ± 33.9 mg vs -32.3 ± 34.9 mg, P < .01; 0.28 ± 0.2 mg vs -0.47 ± 0.2 mg, P = .02; 8.6 ± 3.4 g vs -1.1 ± 3.5 g, P =.05; 6.3 ± 3.9 g vs -6.3 ± 4.0 g, P = .03; and 25.4 ± 4.0 vs -6.6 ± 4.2 g, P < .01, respectively). Vitamin C intake decreased (-65.3 ± 55.3 mg vs 98.9 ± 56.8 mg, P = .04). Protein intake increased from baseline with the inclusion of walnuts (20.0 ± 8.8 g, P < .05). Walnut inclusion led to an increase in total calories consumed when caloric intake is not regulated. Conclusion: Including walnuts in the diets of these adults led to increased dietary intake of some nutrients associated with lower risk of developing T2DM and other cardiometabolic risk factors.