Park, J.M., J.M. An, Y.M. Han, Y.J. Surh, S.J. Hwang, S.J. Kim, K.B. Hahm, 2020. Walnut polyphenol extracts inhibit Helicobacter pylori-induced STAT3Tyr705 phosphorylation through activation of PPAR-γ and SOCS1 induction. J Clin Biochem Nutr.67(3):248-256.
The health beneficial effects of walnut plentiful of n-3 polyunsaturated fatty acid had been attributed to its anti-inflammatory and anti-oxidative properties against various clinical diseases. Since we have published Fat-1 transgenic mice overexpressing 3-desaturase significantly mitigated Helicobacter pylori (H. pylori)-associated gastric pathologies including rejuvenation of chronic atrophic gastritis and prevention of gastric cancer, in this study, we have explored the underlying molecular mechanisms of walnut against H. pylori infection. Fresh walnut polyphenol extracts (WPE) were found to suppress the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) induced by H. pylori infection in RGM-1 gastric mucosal cells. Notably, H. pylori infection significantly decreased suppressor of cytokine signaling 1 (SOCS1), but WPE induced expression of SOCS1, by which the suppressive effect of walnut extracts on STAT3Tyr705 phosphorylation was not seen in SOCS1 KO cells. WPE induced significantly increased nuclear translocation nuclear translocation of PPAR-γ in RGM1 cells, by which PPAR-γ KO inhibited transcription of SOCS1 and suppressive effect of WPE on p-STAT3Tyr705 was not seen. WPE inhibited the expression of c-Myc and IL-6/IL-6R signaling, which was attenuated in the RGM1 cells harboring SOCS1 specific siRNA. Conclusively, WPE inhibits H. pylori-induced STAT3 phosphorylation in a PPAR-γ and SOCS1-dependent manner.
Guan, V., E. Neale, L. Tapsell, Y. Probst, 2020. Identifying usual food choice combinations with walnuts: Analysis of a 2005-2015 clinical trial cohort of overweight and obese adults. Front Nutr. 7:149. doi: 10.3389/fnut.2020.00149.
Consumption of nuts has been associated with a range of favorable health outcomes. Evidence is now emerging to suggest that walnuts may also play an important role in supporting the consumption of a healthy dietary pattern. However, limited studies have explored how walnuts are eaten at different meal occasions. The aim of this study was to explore the food choices in relation to walnuts at meal occasions as reported by a sample of overweight and obese adult participants of weight loss clinical trials. Baseline usual food intake data were retrospectively pooled from four food-based clinical trials (n=758). A nut-specific food composition database was applied to determine walnut consumption within the food intake data. The Apriori algorithm of association rules was used to identify food choices associated with walnuts at different meal occasions using a nested hierarchical food group classification system. The proportion of participants who were consuming walnuts was 14.5% (n=110). The median walnut intake was 5.14 (IQR 1.10 – 11.45) grams per day. A total of 128 food items containing walnuts were identified for walnut consumers. The proportion of participants who reported consuming unsalted raw walnut was 80.5% (n=103). There were no identified patterns to food choices in relation to walnut at the breakfast, lunch or dinner meal occasions. A total of 24 clusters of food choices related to walnuts were identified at others (meals). By applying a novel food composition database, the present study was able to map the precise combinations of foods associated with walnuts intakes at mealtimes using data mining. This study offers insights into the role of walnuts for the food choices of overweight adults and may support guidance and dietary behavior change strategies.
McArthur, B., R. Mattes, 2020. Energy extraction from nuts: walnuts, almonds, pistachios. Br J Nutr. 123(4):361-371.
The bioaccessibility of fat has implications for satiety and postprandial lipidemia. The prevailing view holds that the integrity of plant cell wall structure is the primary determinant of energy and nutrient extraction from plant cells as they pass through the gastrointestinal tract. However, comparisons across nuts (walnuts, almonds, pistachios) with varying physical properties do not support this view. In this study, masticated samples of three nuts from healthy adults were exposed to a static model of gastric digestion followed by simulated intestinal digestion. Primary outcomes were particle size and lipid release at each phase of digestion. Walnuts produced a significantly larger particle size post-mastication compared to almonds. Under gastric and intestinal conditions, the particle size was larger for walnuts compared to pistachios and almonds (P<0.05). However, the masticated and digesta particle sizes were not related to the integrity of cell walls nor lipid release. The total lipid release was comparable between nuts after the in vitro intestinal phase (P>0.05). Microstructural examination showed ruptured and fissured cell walls that would allow digestion of cellular contents and this may be governed by internal cellular properties such as oil body state. Furthermore, the cell walls of walnuts tend to rupture rather than separate and as walnut tissue passes through the gastrointestinal track, lipids tend to coalesce reducing digestion efficiency.
Lázaro, I., F. Rueda, G. Cediel, E. Ortega, C. García-García, A. Sala-Vila, A. Bayés-Genís, 2020. Circulating omega-3 fatty acids and incident adverse events in patients with acute myocardial infarction. J Am Coll Cardiol. 76(18):2089-2097.
Background: Dietary omega-3 eicosapentaenoic acid (EPA) has multiple cardioprotective properties. The proportion of EPA in serum phosphatidylcholine (PC) mirrors dietary EPA intake during previous weeks. Circulating EPA in ST-segment elevation myocardial infarction (STEMI) relates to smaller infarct size and preserved long-term ventricular function. Objectives: The authors investigated whether serum-PC EPA (proxy for marine omega-3 consumption) levels at the time of STEMI were associated with a lower incidence of major adverse cardiovascular events (MACE), all-cause mortality, and readmission for cardiovascular (CV) causes at 3 years’ follow-up. We also explored the association of alpha-linolenic acid (ALA, proxy for vegetable omega-3 intake) with all-cause mortality and MACE. Methods The authors prospectively included 944 consecutive patients with STEMI (mean age 61 years, 209 women) undergoing primary percutaneous coronary intervention. We determined serum-PC fatty acids with gas chromatography. Results During follow-up, 211 patients had MACE, 108 died, and 130 were readmitted for CV causes. A Cox proportional hazards model adjusted for known clinical predictors showed that serum-PC EPA at the time of STEMI was inversely associated with both incident MACE and CV readmission (hazard ratio [HR]: 0.76; 95% confidence interval [CI]: 0.62 to 0.94, and HR: 0.74; 95% CI: 0.58 to 0.95, respectively, for a 1-standard deviation [SD] increase). Serum-PC ALA was inversely related to all-cause mortality (HR: 0.65; 95% CI: 0.44 to 0.96, for a 1-SD increase). Conclusions: Elevated serum-PC EPA and ALA levels at the time of STEMI were associated with a lower risk of clinical adverse events. Consumption of foods rich in these fatty acids might improve the prognosis of STEMI.