Archive

Clinical and molecular characterization of walnut and pecan allergy (NUT CRACKER Study).

Elizur, A., M.Y. Appel, L. Nachshon, M.B. Levy, N. Epstein-Rigbi, B. Pontoppidan, J. Lidholm, M.R. Goldberg, 2020. Clinical and molecular characterization of walnut and pecan allergy (NUT CRACKER Study). J Allergy Clin Immunol: In Practice. 8(1):157-165.e2

Background: Diagnostic methods for distinguishing walnut-allergic patients from walnut-sensitized but walnut-tolerant individuals are limited. Furthermore, characteristics of single walnut versus dual walnut-pecan allergy are lacking. Objective: To provide clinical and molecular characteristics of walnut- and pecan-allergic patients. Methods: A prospective cohort study of 76 walnut-sensitized patients was performed. Walnut skin prick test and serum measurements of specific IgE to walnut and its components were performed. Patients were challenged to walnut and pecan unless they regularly consumed walnut and pecan. Results: Of the 76 patients studied, 61 were diagnosed as walnut-allergic and 15 as walnut-tolerant. IgE levels greater than or equal to 0.35 kUA/L to Jug r 1 or 4 provided the best diagnostic method for identifying walnut-allergic patients (accuracy, 0.93). Of the 61 walnut-allergic patients, 49 were pecan-allergic whereas 12 were pecan-tolerant. None of the walnut-tolerant patients was allergic to pecan. Dual allergic patients had significantly lower walnut reaction dose (median, 100 mg vs 1230 mg; P < .001). IgE levels greater than or equal to 0.35 kUA/L to Jug r 4, low-molecular-weight vicilins, or high-molecular-weight vicilins best segregated dual walnut-pecan–allergic patients from single walnut-allergic patients. Inhibition studies demonstrated that walnut pretreatment completely blocked IgE binding to pecan, whereas in some patients, pecan incubation only partially blocked IgE binding to walnut. Conclusions: Walnut components are helpful in diagnosing walnut allergy and in identifying patients with pecan coallergy. Competitive ELISA indicates that pecan comprises a subset of the allergenic determinants of walnut.

The effect of green Mediterranean diet on cardiometabolic risk; a randomised controlled trial.

Tsaban, G., A. Yaskolka Meir, E. Rinott, H. Zelicha, A. Kaplan, A. Shalev, A. Katz, A. Rudich, A. Tirosh, I. Shelef, I. Youngster, S. Lebovitz,  N. Israeli, M. Shabat, D. Brikner, E. Pupkin, M. Stumvoll, J. Thiery, U. Ceglarek, J.T. Heiker, A. Körner, K. Landgraf, M. von Bergen, M. Blüher, M.J. Stampfer, I. Shai, 2020. The effect of green Mediterranean diet on cardiometabolic risk; a randomised controlled trial. Heart. heartjnl-2020-317802.  doi: 10.1136/heartjnl-2020-317802.

Background: A Mediterranean diet is favourable for cardiometabolic risk. Objective To examine the residual effect of a green Mediterranean diet, further enriched with green plant-based foods and lower meat intake, on cardiometabolic risk. Methods:  For the DIRECT-PLUS parallel, randomised clinical trial we assigned individuals with abdominal obesity/dyslipidaemia 1:1:1 into three diet groups: healthy dietary guidance (HDG), Mediterranean and green Mediterranean diet, all combined with physical activity. The Mediterranean diets were equally energy restricted and included 28 g/day walnuts. The green Mediterranean diet further included green tea (3–4 cups/day) and a Wolffia globosa (Mankai strain; 100 g/day frozen cubes) plant-based protein shake, which partially substituted animal protein. We examined the effect of the 6-month dietary induction weight loss phase on cardiometabolic state. Results Participants (n=294; age 51 years; body mass index 31.3 kg/m2; waist circumference 109.7 cm; 88% men; 10-year Framingham risk score 4.7%) had a 6-month retention rate of 98.3%. Both Mediterranean diets achieved similar weight loss ((green Mediterranean −6.2 kg; Mediterranean −5.4 kg) vs the HDG group −1.5 kg; p<0.001), but the green Mediterranean group had a greater reduction in waist circumference (−8.6 cm) than the Mediterranean (−6.8 cm; p=0.033) and HDG (−4.3 cm; p<0.001) groups. Stratification by gender showed that these differences were significant only among men. Within 6 months the green Mediterranean group achieved greater decrease in low-density lipoprotein cholesterol (LDL-C; green Mediterranean −6.1 mg/dL (−3.7%), −2.3 (-0.8%), HDG −0.2 mg/dL (+1.8%); p=0.012 between extreme groups), diastolic blood pressure (green Mediterranean −7.2 mm Hg, Mediterranean −5.2 mm Hg, HDG −3.4 mm Hg; p=0.005 between extreme groups), and homeostatic model assessment for insulin resistance (green Mediterranean −0.77, Mediterranean −0.46, HDG −0.27; p=0.020 between extreme groups). The LDL-C/high-density lipoprotein cholesterol (HDL-C) ratio decline was greater in the green Mediterranean group (−0.38) than in the Mediterranean (−0.21; p=0.021) and HDG (−0.14; p<0.001) groups. High-sensitivity C-reactive protein reduction was greater in the green Mediterranean group (−0.52 mg/L) than in the Mediterranean (−0.24 mg/L; p=0.023) and HDG (−0.15 mg/L; p=0.044) groups. The green Mediterranean group achieved a better improvement (−3.7% absolute risk reduction) in the 10-year Framingham Risk Score (Mediterranean−2.3%; p=0.073, HDG−1.4%; p<0.001). Conclusions: The green MED diet, supplemented with walnuts, green tea and Mankai and lower in meat/poultry, may amplify the beneficial cardiometabolic effects of Mediterranean diet.

Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease.

Tindall, A.M., C.J. McLimans, K.S. Petersen, P.M. Kris-Etherton, R. Lamendella, 2020.  Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr. 150(4):806-817.

Background: It is unclear whether the favorable effects of walnuts on the gut microbiota are attributable to the fatty acids, including α-linolenic acid (ALA), and/or the bioactive compounds and fiber. Objective: This study examined between-diet gut bacterial differences in individuals at increased cardiovascular risk following diets that replace SFAs with walnuts or vegetable oils. Methods: Forty-two adults at cardiovascular risk were included in a randomized, crossover, controlled-feeding trial that provided a 2-wk standard Western diet (SWD) run-in and three 6-wk isocaloric study diets: a diet containing whole walnuts (WD; 57-99 g/d walnuts; 2.7% ALA), a fatty acid-matched diet devoid of walnuts (walnut fatty acid-matched diet; WFMD; 2.6% ALA), and a diet replacing ALA with oleic acid without walnuts (oleic acid replaces ALA diet; ORAD; 0.4% ALA). Fecal samples were collected following the run-in and study diets to assess gut microbiota with 16S rRNA sequencing and Qiime2 for amplicon sequence variant picking. RESULTS: Subjects had elevated BMI (30 ± 1 kg/m2), blood pressure (121 ± 2/77 ± 1 mmHg), and LDL cholesterol (120 ± 5 mg/dL). Following the WD, Roseburia [relative abundance (RA) = 4.2%, linear discriminant analysis (LDA) = 4], Eubacterium eligensgroup (RA = 1.4%, LDA = 4), LachnospiraceaeUCG001 (RA = 1.2%, LDA = 3.2), Lachnospiraceae UCG004 (RA = 1.0%, LDA = 3), and Leuconostocaceae (RA = 0.03%, LDA = 2.8) were most abundant relative to taxa in the SWD (P ≤ 0.05 for all). The WD was also enriched in Gordonibacter relative to the WFMD. Roseburia (3.6%, LDA = 4) and Eubacterium eligensgroup (RA = 1.5%, LDA = 3.4) were abundant following the WFMD, and Clostridialesvadin BB60group (RA = 0.3%, LDA = 2) and gutmetagenome (RA = 0.2%, LDA = 2) were most abundant following the ORAD relative to the SWD (P ≤ 0.05 for all). Lachnospiraceae were inversely correlated with blood pressure and lipid/lipoprotein measurements following the WD. Conclusions: The results indicate similar enrichment of Roseburia following the WD and WFMD, which could be explained by the fatty acid composition. Gordonibacter enrichment and the inverse association between Lachnospiraceae and cardiovascular risk factors following the WD suggest that the gut microbiota may contribute to the health benefits of walnut consumption in adults at cardiovascular risk. This trial was registered at clinicaltrials.gov as NCT02210767.

Walnut consumption and cardiac phenotypes: The Coronary Artery Risk Development in Young Adults (CARDIA) study.

Steffen, L.M., S.Y. Yi, D. Duprez, X. Zhou, J.M. Shikany, D.R. Jacobs Jr., 2020. Walnut consumption and cardiac phenotypes: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Nutr Metab Cardiovasc Dis. 31(1):95-101.

Background and Aims: Observational studies and clinical trials have shown cardiovascular benefits of nut consumption, including walnuts. However, the relations of walnut consumption with systolic and diastolic function, risk factors for heart failure, are unknown.  We examined the associations of walnut consumption with cardiac structure and function parameters in black and white adults enrolled in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Methods and Results: After exclusions, the study population included 3,341 participants. Dietary intake was assessed using the CARDIA Diet History questionnaire at baseline, year 7 and year 20 exams.  Cardiac structure and function were measured by echocardiography at year 25. Multivariable linear regression evaluated the associations of walnut consumption with blood pressure (BP), heart rate, and cardiac phenotypes, adjusting for age, sex, race, lifestyle habits, and clinical characteristics. We found the majority of walnut consumers compared to non-consumers were females, whites, and more highly educated, and had lower waist circumference, diastolic BP, and heart rate, and higher diet quality score. Even though cardiac structure and function measures were generally within normal ranges among participants, walnut consumers had significantly better values for diastolic function parameters A wave, E/A ratio, septal and lateral e’ than non-consumers. Further adjustment for body mass index and diabetes status did not materially change the significance between walnut consumer groups. Systolic function parameters did not differ by walnut group.  Conclusion: Compared to non-consumers, walnut consumption is associated with better diastolic dysfunction in young to middle-aged adults.

Wolffia globosa–Mankai Plant-Based Protein Contains Bioactive Vitamin B12 and Is Well Absorbed in Humans.

Sela, I.,  A.Y. Meir, A. Brandis, R. Krajmalnik-Brown, L. Zeibich, D. Chang, B. Dirks, G. Tsaban, A. Kaplan, E. Rinott, H. Zelicha, 2020. Wolffia globosa–Mankai Plant-Based Protein Contains Bioactive Vitamin B12 and Is Well Absorbed in Humans. Nutrients. 12, 3067. doi: 10.3390/nu12103067

Abstract: Background: Rare plants that contain corrinoid compounds mostly comprise cobalamin analogues, which may compete with cobalamin (vitamin B12 (B12)) metabolism. We examined the presence of B12 in a cultivated strain of an aquatic plant: Wolffia globosa (Mankai), and predicted functional pathways using gut-bioreactor, and the effects of long-term Mankai consumption as a partial meat substitute, on serum B12 concentrations. Methods: We used microbiological assay, liquid-chromatography/electrospray-ionization-tandem-mass-spectrometry (LC-MS/MS), and anoxic bioreactors for the B12 experiments. We explored the effect of a green Mediterranean/low-meat diet, containing 100 g of frozen Mankai shake/day, on serum B12 levels during the 18-month DIRECT-PLUS (ID:NCT03020186) weight-loss trial, compared with control and Mediterranean diet groups. Results: The B12 content of Mankai was consistent at different seasons (p = 0.76). Several cobalamin congeners (Hydroxocobalamin(OH-B12); 5-deoxyadenosylcobalamin(Ado-B12); methylcobalamin(Me-B12); cyanocobalamin(CN-B12)) were identified in Mankai extracts, whereas no pseudo B12 was detected. A higher abundance of 16S-rRNA gene amplicon sequences associated with a genome containing a KEGG ortholog involved in microbial B12 metabolism were observed, compared with control bioreactors that lacked Mankai. Following the DIRECT-PLUS intervention (n = 294 participants; retention-rate = 89%; baseline B12 = 420.5 ± 187.8 pg/mL), serum B12 increased by 5.2% in control, 9.9% in Mediterranean, and 15.4% in Mankai-containing green Mediterranean/low-meat diets (p = 0.025 between extreme groups). Conclusions: Mankai plant contains bioactive B12 compounds and could serve as a B12 plant-based food source.

Tree nut snack consumption is associated with better diet quality and CVD risk in the UK adult population: National Diet and Nutrition Survey (NDNS) 2008–2014.

Dikariyanto, V., S.E. Berry, G.K. Pot, L. Francis, L. Smith, W.L. Hall, 2020. Tree nut snack consumption is associated with better diet quality and CVD risk in the UK adult population: National Diet and Nutrition Survey (NDNS) 2008–2014. Public Health Nutrition. 23(17), 3160–3169.

Objectives: To examine associations of tree nut snack (TNS) consumption with diet quality and cardiovascular disease (CVD) risk in UK adults from National Diet and Nutrition Survey (NDNS) 2008–2014. Design: Cross-sectional analysis using data from 4-d food diaries, blood samples and physical measurements for CVD risk markers. To estimate diet quality, modified Mediterranean Diet Score (MDS) and modified Healthy Diet Score (HDS) were applied. Associations of TNS consumption with diet quality and markers of CVD risk were investigated using survey-adjusted multivariable linear regression adjusted for sex, age, ethnicity, socio-economic and smoking status, region of residency and total energy and alcohol intake. Setting: UK free-living population. Subjects: 4738 adults (≥19 years). Results: TNS consumers had higher modified MDS and HDS relative to non-consumers. TNS consumers also had lower BMI, WC, SBP and DBP and higher HDL compared to non-consumers, although a dose-related fully adjusted significant association between increasing nut intake (g per 4184 kJ/1000 kcal energy intake) and lower marker of CVD risk was only observed for SBP. TNS consumption was also associated with higher intake of total fat, mono-, n-3 and n-6 polyunsaturated fatty acids, fibre, vitamin A, thiamin, folate, vitamin C, vitamin E, potassium, magnesium, phosphorus, selenium and iron; and lower intake of saturated fatty acids, trans fatty acids, total carbohydrate, starch, free sugar, sodium and chloride. Conclusions: TNS consumers report better dietary quality and consumption was associated with lower CVD risk factors. Encouraging replacement of less healthy snacks with TNS should be encouraged as part of general dietary guidelines.

Nut consumption and risk of cancer: A meta-analysis of prospective studies.

Long, J., Z. Ji, P. Yuan, T. Long, K. Liu, J. Li, L. Cheng, 2020. Nut consumption and risk of cancer: A meta-analysis of prospective studies. Cancer Epidemiol Biomarkers Prev. doi: 10.1158/1055-9965.EPI-19-1167.

Background: Epidemiologic studies have investigated the association between nut intake and risk for multiple cancers. However, current findings are inconsistent and no definite conclusion has been drawn from prospective studies. We therefore conducted this meta-analysis to evaluate the relationship between nut consumption and risk of cancer. Methods: Prospective studies reporting associations between nut intake and risk for all types of cancer were identified by searching Web of Science and PubMed databases up to June 2019. Risk ratios (RR) and 95% confidence intervals (CI) were extracted and then pooled across the studies using a random-effect model. A dose–response analysis was modeled by performing restricted cubic splines when data were available. Results: Thirty-three studies that included more than 50,000 cancer cases were eligible for the analysis. When comparing the highest with the lowest category of nut intake, high consumption of nuts was significantly associated with decreased risk of overall cancer (RR= 0.90; 95% CI, 0.85–0.95). The protective effect of nut consumption was especially apparent against cancers from the digestive system (RR=0.83; 95% CI, 0.77–0.89). Among different nut classes, significant association was only obtained for intake of tree nuts. We also observed a linear dose–response relationship between nut consumption and cancer: Per 20 g/day increase in nut consumption was related to a 10% (RR=0.90; 95% CI, 0.82–0.99) decrease in cancer risk. Conclusions: Our analysis demonstrated an inverse association of dietary nut consumption with cancer risk, especially for cancers from the digestive system. Impact: This study highlights the protective effect of nuts against cancer.

Effect of walnut consumption on markers of blood glucose control: A systematic review and meta-analysis.

Neale, E., V. Guan, L. Tapsell, Y. Probst, 2020. Effect of walnut consumption on markers of blood glucose control: A systematic review and meta-analysis.  Br J Nutr. 124(7):641-653.

Type 2 diabetes mellitus is a chronic disease increasing in global prevalence. Although habitual consumption of walnuts is associated with reduced risk of CVD, there is inconsistent evidence for the impact of walnut consumption on markers of glycaemic control. This systematic review and meta-analysis aimed to examine the effect of walnut consumption on markers of blood glucose control. A systematic search of Medline, PubMed, CINAHL and Cochrane databases (to 2 March 2019) was conducted. Inclusion criteria were randomised controlled trials conducted with adults which assessed the effect of walnut consumption on fasting blood glucose and insulin, glycated Hb and homeostatic model assessment of insulin resistance. Random effects meta-analyses were conducted to assess the weighted mean differences (WMD) for each outcome. Risk of bias in studies was assessed using the Cochrane Risk of Bias tool 2.0. Sixteen studies providing eighteen effect sizes were included in the review. Consumption of walnuts did not result in significant changes in fasting blood glucose levels (WMD: 0·331 mg/dl; 95 % CI −0·817, 1·479) or other outcome measures. Studies were determined to have either ‘some concerns’ or be at ‘high risk’ of bias. There was no evidence of an effect of walnut consumption on markers of blood glucose control. These findings suggest that the known favourable effects of walnut intake on CVD are not mediated via improvements in glycaemic control. Given the high risk of bias observed in the current evidence base, there is a need for further high-quality randomised controlled trials.

Walnut polyphenol extracts inhibit Helicobacter pylori-induced STAT3Tyr705 phosphorylation through activation of PPAR-γ and SOCS1 induction.

Park, J.M., J.M. An, Y.M. Han, Y.J. Surh, S.J. Hwang, S.J. Kim, K.B. Hahm, 2020. Walnut polyphenol extracts inhibit Helicobacter pylori-induced STAT3Tyr705 phosphorylation through activation of PPAR-γ and SOCS1 induction. J Clin Biochem Nutr. 67(3):248-256.

The health beneficial effects of walnut plentiful of n-3 polyunsaturated fatty acid had been attributed to its anti-inflammatory and anti-oxidative properties against various clinical diseases. Since we have published Fat-1 transgenic mice overexpressing 3-desaturase significantly mitigated Helicobacter pylori (H. pylori)-associated gastric pathologies including rejuvenation of chronic atrophic gastritis and prevention of gastric cancer, in this study, we have explored the underlying molecular mechanisms of walnut against H. pylori infection. Fresh walnut polyphenol extracts (WPE) were found to suppress the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) induced by H. pylori infection in RGM-1 gastric mucosal cells. Notably, H. pylori infection significantly decreased suppressor of cytokine signaling 1 (SOCS1), but WPE induced expression of SOCS1, by which the suppressive effect of walnut extracts on STAT3Tyr705 phosphorylation was not seen in SOCS1 KO cells. WPE induced significantly increased nuclear translocation nuclear translocation of PPAR-γ in RGM1 cells, by which PPAR-γ KO inhibited transcription of SOCS1 and suppressive effect of WPE on p-STAT3Tyr705 was not seen. WPE inhibited the expression of c-Myc and IL-6/IL-6R signaling, which was attenuated in the RGM1 cells harboring SOCS1 specific siRNA. Conclusively, WPE inhibits H. pylori-induced STAT3 phosphorylation in a PPAR-γ and SOCS1-dependent manner.

Energy extraction from nuts: walnuts, almonds, pistachios.

McArthur, B., R. Mattes, 2020. Energy extraction from nuts: walnuts, almonds, pistachios. Br J Nutr. 123(4):361-371.

The bioaccessibility of fat has implications for satiety and postprandial lipidemia. The prevailing view holds that the integrity of plant cell wall structure is the primary determinant of energy and nutrient extraction from plant cells as they pass through the gastrointestinal tract. However, comparisons across nuts (walnuts, almonds, pistachios) with varying physical properties do not support this view. In this study, masticated samples of three nuts from healthy adults were exposed to a static model of gastric digestion followed by simulated intestinal digestion. Primary outcomes were particle size and lipid release at each phase of digestion. Walnuts produced a significantly larger particle size post-mastication compared to almonds. Under gastric and intestinal conditions, the particle size was larger for walnuts compared to pistachios and almonds (P<0.05). However, the masticated and digesta particle sizes were not related to the integrity of cell walls nor lipid release. The total lipid release was comparable between nuts after the in vitro intestinal phase (P>0.05). Microstructural examination showed ruptured and fissured cell walls that would allow digestion of cellular contents and this may be governed by internal cellular properties such as oil body state. Furthermore, the cell walls of walnuts tend to rupture rather than separate and as walnut tissue passes through the gastrointestinal track, lipids tend to coalesce reducing digestion efficiency.