Archive

Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial.

Yaskolka M.A., E. Rinott, G. Tsaban, H. Zelicha, A. Kaplan, P. Rosen, I. Shelef, I. Youngster, A. Shalev, M. Blüher, U. Ceglarek, M. Stumvoll, K. Tuohy, C. Diotallevi, U. Vrhovsek, F. Hu, M. Stampfer, I. Shai, 2021. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut. 0:1–11. doi:10.1136/gutjnl-2020-323106.

Objective: To examine the effectiveness of green-Mediterranean (MED) diet, further restricted in red/ processed meat, and enriched with green plants and polyphenols on non-alcoholic fatty liver disease (NAFLD), reflected by intrahepatic fat (IHF) loss. Design: For the DIRECT-PLUS 18-month randomized clinical trial, we assigned 294 participants with abdominal obesity/dyslipidaemia into healthy dietary guidelines (HDG), MED and green-MED weight-loss diet groups, all accompanied by physical activity. Both isocaloric MED groups consumed 28 g/day walnuts (+440 mg/day polyphenols provided). The green-MED group further consumed green tea (3–4 cups/day) and Mankai (a Wolffia globosa aquatic plant strain; 100 g/ day frozen cubes) green shake (+1240 mg/day total polyphenols provided). IHF% 18-month changes were quantified continuously by proton magnetic resonance spectroscopy (MRS). Results: Participants (age=51 years; 88% men; body mass index=31.3 kg/m2; median IHF%=6.6%; mean=10.2%; 62% with NAFLD) had 89.8% 18 month retention-rate, and 78% had eligible follow-up MRS. Overall, NAFLD prevalence declined to: 54.8% (HDG), 47.9% (MED) and 31.5% (green-MED), p=0.012 between groups.  Despite similar moderate weight-loss in both MED groups, green-MED group achieved almost double IHF% loss (−38.9% proportionally), as compared with MED (−19.6% proportionally; p=0.035 weight loss adjusted) and HDG (−12.2% proportionally; p<0.001). After 18 months, both MED groups had significantly higher total plasma polyphenol levels versus HDG, with higher detection of Naringenin and 2-5-dihydroxybenzoic- acid in green-MED. Greater IHF% loss was independently associated with increased Mankai and walnuts intake, decreased red/processed meat consumption, improved serum folate and adipokines/lipids biomarkers, changes in microbiome composition (beta-diversity) and specific bacteria (p<0.05 for all). Conclusion: The new suggested strategy of green-Mediterranean diet, amplified with green plant-based proteins/polyphenols as Mankai, green tea, and walnuts, and restricted in red/processed meat can double IHF loss than other healthy nutritional strategies and reduce NAFLD in half.

Effects of diet-modulated autologous fecal microbiota transplantation on weight regain.

Rinott, E., I. Youngster, A.Y. Meir, G. Tsaban, H. Zelicha, A. Kaplan, D. Knights, K. Tuohy, F. Fava, M.U. Scholz, O. Ziv, E. Reuven, A. Tirosh, A. Rudich, M. Blüher, M. Stumvoll, U. Ceglarek, K. Clement, O. Koren, D.D. Wang, F.B. Hu, M.J. Stampfer, I. Shai, 2020. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology. doi: https:// doi.org/10.1053/j.gastro.2020.08.041.

Background & Aims: We evaluated the efficacy and safety of diet-modulated autologous fecal microbiota transplantation (aFMT) for treatment of weight regain after the weight loss phase. Methods: In the DIRECT-PLUS weight loss trial (May 2017 through July 2018), abdominally obese or dyslipidemic participants in Israel were randomly assigned to (1) healthy dietary guidelines, (2) Mediterranean diet, and (3) green-Mediterranean diet weight-loss groups. All groups received free gym membership and physical activity guidelines. Both iso-caloric Mediterranean groups consumed 28g/day walnuts (+440mg/d polyphenols provided). The green-Mediterranean dieters further consumed green tea (3-4 cups/day) and a Wolffia-globosa (Mankai strain;100g/day) green shake (+800mg/day polyphenols provided). After 6 months (weight-loss phase), 90 eligible participants (mean age, 52 years; mean weight loss, 8.3 kg) provided a fecal sample that was processed into aFMT by frozen, opaque and odorless capsules. The participants were then randomly assigned to groups that received 100 capsules containing their own fecal microbiota or placebo until month 14. The primary outcome was regain of the lost weight over the expected weight regain phase (months 6–14). Secondary outcomes were gastrointestinal symptoms, waist-circumference, glycemic status and changes in the gut microbiome, as measured by metagenomic sequencing and 16s-rRNA. We validated the results in a parallel in-vivo study of mice specifically fed with Mankai, as compared to control chow diet. Results: Of the 90 participants in the aFMT trial, 96% ingested at least 80 of 100 oral aFMT or placebo frozen capsules over the transplantation period. No aFMTrelated adverse events or symptoms were observed. For the primary outcome, although no significant differences in weight regain were observed among the participants in the different lifestyle interventions during months 6–14 (aFMT, 30.4% vs. placebo, 40.6%;P=.28), aFMT significantly attenuated weight regain in the green Mediterranean group (aFMT, 17.1%, vs placebo, 50%; P=.02), but not in the dietary guidelines (P=.57) or Mediterranean diet (P=.64) groups (P for the interaction=.03). Accordingly, aFMT attenuated waist circumference gain (aFMT, 1.89cm vs placebo, 5.05cm;P=.01) and insulin rebound (aFMT, 1.46±3.6µIU/ml vs placebo, 1.64±4.7µIU/ml;P=.04) in the green Mediterranean group but not in the dietary guidelines or Mediterranean diet (P for the interaction=.04 and .03, respectively). The green-Mediterranean diet was the only intervention to induce a significant change in microbiome composition during the weight loss phase, and to prompt preservation of weight loss-associated specific bacteria and microbial metabolic pathways (mainly microbial sugar transport) following the aFMT. In mice, Mankaimodulated aFMT in the weight loss phase, compared with control diet aFMT, significantly prevented weight regain, and resulted in better glucose tolerance, during a high-fat-diet induced regain phase (P<.05 for all). Conclusions: Autologous FMT, collected during the weight loss phase and administrated in the regain phase, might preserve weight loss and glycemic control and is associated with specific microbiome signatures. High-polyphenols, green plant-based or Mankai diet better optimizes the microbiome for an aFMT procedure.

Identifying usual food choice combinations with walnuts: Analysis of a 2005-2015 clinical trial cohort of overweight and obese adults.

Guan, V., E. Neale, L. Tapsell, Y. Probst, 2020. Identifying usual food choice combinations with walnuts: Analysis of a 2005-2015 clinical trial cohort of overweight and obese adults. Front Nutr. 7:149. doi: 10.3389/fnut.2020.00149.

Consumption of nuts has been associated with a range of favorable health outcomes. Evidence is now emerging to suggest that walnuts may also play an important role in supporting the consumption of a healthy dietary pattern. However, limited studies have explored how walnuts are eaten at different meal occasions. The aim of this study was to explore the food choices in relation to walnuts at meal occasions as reported by a sample of overweight and obese adult participants of weight loss clinical trials. Baseline usual food intake data were retrospectively pooled from four food-based clinical trials (n=758). A nut-specific food composition database was applied to determine walnut consumption within the food intake data. The Apriori algorithm of association rules was used to identify food choices associated with walnuts at different meal occasions using a nested hierarchical food group classification system. The proportion of participants who were consuming walnuts was 14.5% (n=110). The median walnut intake was 5.14 (IQR 1.10 – 11.45) grams per day. A total of 128 food items containing walnuts were identified for walnut consumers. The proportion of participants who reported consuming unsalted raw walnut was 80.5% (n=103). There were no identified patterns to food choices in relation to walnut at the breakfast, lunch or dinner meal occasions. A total of 24 clusters of food choices related to walnuts were identified at others (meals). By applying a novel food composition database, the present study was able to map the precise combinations of foods associated with walnuts intakes at mealtimes using data mining. This study offers insights into the role of walnuts for the food choices of overweight adults and may support guidance and dietary behavior change strategies.

Acute effects of an isocaloric macronutrient-matched breakfast meal containing almonds on glycemic, hormonal, and appetite responses in men with type 2 diabetes: a randomized crossover study.

Bodnaruc, A.M., D. Prud’homme, I. Giroux, 2020. Acute effects of an isocaloric macronutrient-matched breakfast meal containing almonds on glycemic, hormonal, and appetite responses in men with type 2 diabetes: a randomized crossover study. Appl. Physiol. Nutr. Metab. 00: 1–10 (0000) dx.doi.org/10.1139/apnm-2019-0559.

This randomized crossover study assessed the acute effects of almonds on postprandial glycemic, hormonal, and appetite responses in a sample of 7 men with type 2 diabetes (T2D). Participants completed 2 experimental visits during which a control (white bread, butter, cheese) and a test (white bread, almonds) meal were ingested. Energy, available carbohydrate, total lipid, and protein content were the same in both meals. Blood samples were collected in fasting state as well as 15, 30, 60, 90, 120, and 240 min postprandially for quantifying blood glucose, as well as insulin and glucagon-like peptide-1 (GLP-1) serum concentrations. Subjective appetite sensations were assessed using visual analog scales at the same time-points. Within this sample of participants, the test meal was found to be associated with lower postprandial glycemia and insulinemia, higher GLP-1 serum concentrations, decreased hunger and desire to eat, and increased fullness. The test meal was also associated with an increased estimated glucose metabolic clearance rate, indicating higher postprandial insulin sensitivity. Overall, results suggest that almonds’ macronutrient subtype profile could have a beneficial impact on postprandial glycemic, hormonal, and appetite responses in men with T2D. Studies with larger sample sizes are warranted to confirm these findings.