Archive

Effect of a walnut diet on office and 24-hour ambulatory blood pressure in elderly individuals: findings From the WAHA randomized trial.

Domènech, M., M. Serra-Mir, I. Roth, T. Freitas-Simoes, C. Valls-Pedret, M. Cofán, A. López, A. Sala-Vila, C. Calvo, S. Rajaram, J. Sabaté, 2019. Effect of a walnut diet on office and 24-hour ambulatory blood pressure in elderly individuals: findings From the WAHA randomized trial. Hypertension. 73(5):1049-1057.

Nut consumption lowers blood cholesterol and is associated with reduced cardiovascular disease, but effects on blood pressure (BP) are inconsistent. We assessed the 2-year effects of a walnut diet versus a control diet on office BP and 24-hours ambulatory BP in free-living elders participating in the Walnuts and Healthy Aging study, a randomized trial testing the effects of walnuts at ≈15% energy on age-related disorders. In a prespecified analysis, we enrolled 305 participants, of whom 236 (75%) completed the study (65% women; age, 69 years; 60% with mild hypertension). Walnuts were well tolerated, and compliance was >98%. Mean baseline office BP was 128/79 mm Hg. Adjusted changes from baseline in mean office systolic BP were −4.61 mm Hg (95% CI, −7.43 to −1.79 mm Hg) in the walnut group and −0.59 mm Hg (−3.38 to 2.21 mm Hg) in controls (P=0.051). Respective changes in mean systolic 24-hour ambulatory BP were −3.86 mm Hg (CI, −5.45 to −2.26 mm Hg) and −2.00 mm Hg (CI, −3.58 to −0.42 mm Hg; P=0.111). No changes in diastolic BP were observed. In participants in the upper tertile of baseline 24-hour ambulatory systolic BP (>125 mm Hg), mean 2-year systolic 24-hour BP was −8.5 mm Hg (CI, −12 to −5.0 mm Hg) in the walnut group and −2.5 mm Hg (CI,−6.3 to 1.3 mm Hg) in controls (P=0.034). During the trial, participants in the walnut group required less uptitration of antihypertensive medication and had better overall BP regulation than controls. Walnut consumption reduces systolic BP in elderly subjects, particularly in those with mild hypertension.

Walnuts change lipoprotein composition suppressing TNFa-stimulated cytokine production by diabetic adipocyte.

Borkowski, K., S.J. Yim, R.R. Holt, R.M. Hackman, C.L. Keen, J.W. Newman, G.C. Shearer, 2019. Walnuts change lipoprotein composition suppressing TNFa-stimulated cytokine production by diabetic adipocyte. J Nutr Biochem. 68:51-58.

Walnut consumption can provide both vascular and metabolic health benefits, and walnut-induced changes in lipoprotein particle chemical payloads may be responsible for these health benefits. To explore this possibility with a focus on metabolic health, this study investigated the impact of walnut consumption on lipoprotein lipid composition and changes in LDL anti-inflammatory properties, as reported by inflamed adipocyte. Hypercholesterolemic, postmenopausal females were treated with 40 g/day (i.e., 1.6 servings/day; n=15) of walnuts for 4 weeks. Fatty acids and their oxygenated metabolites, i.e., oxylipins, were quantified in isolated lipoproteins. Human primary adipocytes were exposed to LDL and TNFα-stimulated adipokine production was measured. Walnut treatment elevated α-linolenic acid and its epoxides in all lipoproteins and depleted mid-chain alcohols in VLDL and LDL, but not HDL. Walnuts also reduced TNFα-induced diabetic adipocyte production of IL-6 (−48%, P=.0006) and IL-8 (−30%, P=.01), changes inversely correlated with levels of α-linolenic acid-derived epoxides but not α-linolenic acid itself. In conclusion, modest walnut consumption can alter lipoprotein lipid profiles and enhance their ability to inhibit TNFα-dependent pro-inflammatory responses in human diabetic primary adipocytes. Moreover, this study suggests the oxylipins, rather than the parent fatty acids, mediate LDL action of adipocytes.

A randomized, controlled trial on the effects of almonds on lipoprotein response to a higher carbohydrate, lower fat diet in men and women with abdominal adiposity.

Williams, P.T., N. Bergeron, S. Chiu, R.M. Krauss, 2019. A randomized, controlled trial on the effects of almonds on lipoprotein response to a higher carbohydrate, lower fat diet in men and women with abdominal adiposity. Lipids in Health and Disease. 18: 83. doi: https://lipidworld.biomedcentral.com/track/pdf/10.1186/s12944-019-1025-4.

Background: Almonds have been shown to lower LDL cholesterol but there is limited information regarding their effects on the dyslipidemia characterized by increased levels of very low-density lipoproteins (VLDL) and small, dense low-density lipoprotein (LDL) particles that is associated with abdominal adiposity and high carbohydrate intake. The objective of the present study was to test whether substitution of almonds for other foods attenuates carbohydrate-induced increases in small, dense LDL in individuals with increased abdominal adiposity. Methods: This was a randomized cross-over study of three 3wk diets, separated by 2wk washouts: a higher carbohydrate (CHO) reference diet (CHOhigh), a higher-CHO diet with isocaloric substitution of 20% kcal (E) from almonds (CHOhigh + almonds), and a lower-CHO reference diet (CHOlow) in 9 men and 15 women who were overweight or obese. The two CHOhigh diets contained 50% carbohydrate, 15% protein, 35% fat (6% saturated, 21% monounsaturated, 8% polyunsaturated), while the CHOlow diet contained 25% carbohydrate, 28% protein, 47% fat (8% saturated, 28% monounsaturated, 8% polyunsaturated). Lipoprotein subfraction concentrations were measured by ion mobility. Results: Relative to the CHOlow diet: 1) the CHOhigh +almonds diet significantly increased small, dense LDLIIIa (mean difference ± SE: 28.6±10.4nmol/L, P=0.008), and reduced LDL-peak diameter (−1.7±0.6Å, P=0.008); 2) the CHOhigh diet significantly increased medium-sized LDLIIb (24.8±11.4nmol/L, P=0.04) and large VLDL (3.7±1.8 nmol/L, P=0.05). Relative to CHOlow, the effects of CHOhigh on LDLIIIa (17.7±10.6nmol/L) and LDL-peak diameter (−1.1±0.6Å) were consistent with those of CHOhigh + almonds, and the effects of CHOhigh +almonds on LDLIIb (21.0± 11.2nmol/L) and large VLDL (2.8±1.8nmol/L) were consistent with those of CHOhigh, but did not achieve statistical significance (P>0.05). None of the variables examined showed a significant difference between the CHOhigh + almonds and CHOhigh diets (P>0.05). Conclusion: Our analyses provided no evidence that deriving 20% E from almonds significantly modifies increases in levels of small, dense LDL or other plasma lipoprotein changes induced by a higher carbohydrate low saturated fat diet in individuals with increased abdominal adiposity.

Effects of almond consumption on metabolic and liver function in overweight and obese adults with elevated fasting blood glucose: A randomized controlled trial.

Bowen, J., N.D. Luscombe-Marsh, W. Stonehouse, C. Tran, G.B. Rogers, N. Johnson, C.H. Thompson, G.D. Brinkworth, 2019. Effects of almond consumption on metabolic and liver function in overweight and obese adults with elevated fasting blood glucose: A randomized controlled trial. Clin. Nutr. ESPEN 30:10-18.

Background: Almonds are a rich source of bioactive components. This study examined the effects of daily almond consumption on glycaemic regulation, liver fat concentration and function, adiposity, systemic inflammation and cardiometabolic health. Methods: 76 adults with elevated risk of type 2 diabetes (T2D) or T2D (age: 60.7 ± 7.7 years, body mass index: 33.8 ± 5.6 kg/m2) were randomly assigned to daily consumption of either 2 servings of almonds (AS:56 g/day) or an isocaloric, higher carbohydrate biscuit snack (BS) for 8 weeks. Glycosylated haemoglobin (HbA1c), glycaemic variability (GV), liver fat, serum aminotransferases, body weight and composition, markers of cardio-metabolic risk and systemic inflammation were assessed at baseline and week 8. Results: No group differential effects were observed on HbA1c, GV, body weight and composition, liver fat and aminotransferases, cardio-metabolic health and inflammatory markers (all P > 0.05). For serum TC/HDL-C ratio a significant gender × treatment × time interaction occurred (P < 0.01), such that in women TC/HDL-C ratio was significantly reduced after AS compared to BS (-0.36 [0.26] mmol/L [n = 14] vs. -0.14 [0.32] mmol/L [n = 17]; P = 0.05), but not in men (P = 0.52). Conclusions: Compared to BS, AS consumed between meals did not substantially alter glycaemic regulation, liver fat or function, adiposity, and metabolic health and inflammatory markers. Serum TC/HDL-C ratio improved in women, but not in men with AS; but as this sub-analysis was not defined a priori the results should be interpreted with caution. Further research should examine the longer-term health effects of regular almond consumption and differential gender responses.