Archive

Time and intervention effects of daily almond intake on the changes of lipid profile and body composition among free-living healthy adults.

Liu, X., H.-J. Hwang, H.-S. Kim, H. Park, 2018. Time and intervention effects of daily almond intake on the changes of lipid profile and body composition among free-living healthy adults. J Med Food. 21(4):340-347.

Favorable health benefits of almond have been shown in several previous studies. However, repeated measures, randomized, controlled trials to investigate the changes due to almond intake based on the time effects have not yet been reported. The current study was conducted to evaluate the effects of daily almond intake on changes in body composition and lipid profiles for 20 weeks with four measurements among healthy adults. Participants in the almond group showed favorable changes on blood lipid profiles, including levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein (non-HDL-C) after consuming 56g of almond per day for 20 weeks compared with those at baseline. At week 20, subjects in the almond group showed significantly decreased TC, LDL-C, non-HDL-C, TG, body fat mass, and waist–hip ratio compared with those of the control group who consumed isocaloric control food. The mixed model also confirmed that there were significant time effects in several bioimpedance indicators (i.e., total body protein, fat-free mass, etc.) and all of the lipid profile parameters in the almond group. These results confirm the effects of lipid-lowering and modifying body composition of almond consumption. In addition, our results suggest that the measuring time points would be critical to capture the effects of dietary intervention.

Almonds and cardiovascular health: A review.

Kalita S., S. Khandelwal, J. Madan, H. Pandya, B. Sesikeran, K. Krishnaswamy, 2018. Almonds and cardiovascular health: A review. Nutrients. 10, 468; doi:10.3390/nu10040468

Several preventive strategies to reduce dyslipidemia have been suggested, of which dietary modification features as an important one. Dyslipidemia is a major risk factor for coronary heart disease and strategies to manage dyslipidemia have been shown to reduce the incidence of cardiovascular disease (CVD). Although there are proven pharmacological therapies to help manage this condition, nutritional interventions are a safer option to help prevent and manage dyslipidemia. Addition of almonds in the daily diet has been proposed to beneficially impact the lipid profile. This review critically examines the available evidence assessing the effect of almonds on dyslipidemia in the South Asian (particularly Indian) context. An extensive review comprised of epidemiological studies, clinical trials, meta-analyses, and systematic reviews was conducted from published literature from across the world. Studies examining the effect of almonds on different aspects of dyslipidemia viz. high low-density lipoprotein-cholesterol (LDL-C), low high-density lipoprotein-cholesterol (HDL-C), triglyceridaemia, and high total cholesterol levels have been included. In several studies, almonds have been shown to reduce LDL-C—which is a known risk factor for CHD—and the effect of almonds has been well documented in systematic reviews and meta-analysis of clinical trials. Addition of almonds in the diet has been shown to not only to reduce LDL-C levels, but also to maintain HDL-C levels. This review provides information about the use of this simple nutritional strategy which may help manage known major risk factors for heart disease, such as high LDL-C and low HDL-C levels especially in the context of South Asians.

Glucoregulatory and Cardiometabolic Profiles of Almond vs. Cracker Snacking for 8 Weeks in Young Adults: A Randomized Controlled Trial.

Dhillon, J., M. Thorwald, N. De La Cruz, E. Vu, S.A. Asghar, Q. Kuse, L.K. Diaz Rios, R.M. Ortiz, 2018. Glucoregulatory and cardiometabolic profiles of almond vs. cracker snacking for 8 weeks in young adults: a randomized controlled trial. Nutrients. 10, 960; doi:10.3390/nu10080960

Abstract: The transition to nutritional independence makes new college students vulnerable to alterations in eating patterns, which can increase the risk of cardiometabolic disorders. The aim of the study was to examine the potential benefits of almond vs. cracker snacking in improving glucoregulatory and cardiometabolic profiles in new college students. A randomized controlled, parallel-arm, 8-week intervention of 73 college students (BMI: 18–41 kg/m2) with no cardiometabolic disorders was conducted. Participants were randomized into either an almond snack group (56.7 g/day; 364 kcal; n = 38) or Graham cracker control group (77.5 g/day; 338 kcal/d; n = 35). Chronic, static changes were assessed from fasting serum/plasma samples at baseline, and after 4 and 8 weeks. Acute, dynamic effects were assessed during a 2-h oral glucose tolerance test (OGTT) at 8 weeks. Almond snacking resulted in a smaller decline in HDL cholesterol over 8 weeks (13.5% vs. 24.5%, p < 0.05), 13% lower 2-h glucose area under the curve (AUC), 34% lower insulin resistance index (IRI) and 82% higher Matsuda index (p < 0.05) during the OGTT, despite similar body mass gains over 8 weeks compared with the cracker group. In general, both almond and cracker snacking reduced fasting glucose, and LDL cholesterol. Conclusions: Incorporating a morning snack in the dietary regimen of predominantly breakfast-skipping, first-year college students had some beneficial effects on glucoregulatory and cardiometabolic health. Almond consumption has the potential to benefit postprandial glucoregulation in this cohort. These responses may be influenced by cardiometabolic risk factor status.

A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: A randomized controlled trial.

McKay, D.L., M. Eliasziw, C.Y.O. Chen, J.B. Blumberg, 2018. A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: A randomized controlled trial. Nutrients. 2018, 10, 339; doi:10.3390/nu10030339.

Evidence from observational and intervention studies has shown a high intake of tree nuts is associated with a reduced risk of cardiovascular disease (CVD), mortality from type 2 diabetes (T2DM), and all-cause mortality. However, there is limited data regarding their effects on indicators of cardiometabolic risk other than hypercholesterolemia, and little is known about the demonstrable health benefits of pecans (Carya illinoensis (Wangenh.) K.Koch). We conducted a randomized, controlled feeding trial to compare the effects of a pecan-rich diet with an isocaloric control diet similar in total fat and fiber content, but absent nuts, on biomarkers related to CVD and T2DM risk in healthy middle-aged and older adults who are overweight or obese with central adiposity. After 4 weeks on a pecan-rich diet, changes in serum insulin, insulin resistance (HOMA-IR) and beta cell function (HOMA-β) were significantly greater than after the control diet (p < 0.05). Pecan consumption also lowered the risk of cardiometabolic disease as indicated by a composite score reflecting changes in clinically relevant markers. Thus, compared to the control diet, the pecan intervention had a concurrent and clinically significant effect on several relevant markers of cardiometabolic risk.

Effects of hazelnuts and cocoa on vascular reactivity in healthy subjects: a randomised study.

Adamo, M., A.M. Labate, A. Ferrulli, C. Macrì, I. Terruzzi, L. Luzi, 2018. Effects of hazelnuts and cocoa on vascular reactivity in healthy subjects: a randomised study. Int J Food Sci Nutr. 69(2):223-234.

Cocoa helps maintain endothelium-dependent vasodilation; consumption of hazelnuts has been associated with reduced cardiovascular disease risk. This study assesses the effects of hazelnuts and cocoa on vascular reactivity and metabolic profile. Sixty-one healthy volunteers, examined in a randomised, controlled, two-week intervention, received one of six breakfast integrations containing either hazelnuts, cocoa, both or none. Consumption of unpeeled hazelnuts improved HDL-cholesterol (+7.3%, p = .01 vs. baseline, p = .02 vs. control). Brachial artery peak systolic velocities (PSV) at rest increased with hazelnut integrations by 43.4% (p = .04 vs. control) and hazelnut-cocoa integrations by 26.4% (p = .01 vs. control). PSV after 3-min cuff occlusion increased by 60.7% (p = .002 vs. control) with a peeled hazelnut snack and by 64.7% with a hazelnut-cocoa integration (p = .04 vs. control). The combination hazelnut-cocoa may act in a synergic and protective way on cardiovascular system.

The antioxidant activity of pistachios reduces cardiac tissue injury of acute ischemia/reperfusion (I/R) in diabetic Streptozotocin (STZ)-induced hyperglycaemic rats.

Di Paola, R., R. Fusco, E. Gugliandolo, R. D’Amico, M. Campolo, S. Latteri, A. Carughi, G. Mandalari, S. Cuzzocrea, 2018. The antioxidant activity of pistachios reduces cardiac tissue injury of acute ischemia/reperfusion (I/R) in diabetic Streptozotocin (STZ)-induced hyperglycaemic rats. Front Pharmacol. 9:51. doi: 10.3389/fphar.2018.00051. eCollection 2018.

Diabetes mellitus is an important risk factor for the development of heart pathology. Myocardial infarction is the cause of death occurring after prolonged ischemia of the coronary arteries. Restoration of blood flow is the first intervention against heart attack, although the process of restoring blood flow to the ischemic myocardium could cause additional injury. This phenomenon, termed myocardial ischemia-reperfusion (MI-R) injury, is characterized by the formation of oxygen radicals. Pistachios have significant glucose- and insulin-lowering effects and can improve the inflammatory contest by downregulating both the expression and the circulating levels of several metabolic risk markers. The monocyte/macrophage cell line J774 was used to assess the extent of protection by natural raw (NP) and roasted salted (RP) pistachios against lipopolysaccharide (LPS)-induced inflammation. Moreover, antioxidant activity of NP and RP was assessed in an in vivo model of paw edema in rats induced by carrageenan (CAR) injection in the paw. This study evaluates the antioxidant properties of pistachios on the inflammatory process associated with myocardial ischemia/reperfusion injury (I/R) in diabetic rats. Rats were pre-treated with either NP or RP pistachios (30 mg/kg) 18 h prior to the experimental procedure. Results: Here, we demonstrated that treatment with NP reduced myocardial tissue injury, neutrophil infiltration, adhesion molecules (ICAM-1, P-selectin) expression, proinflammatory cytokines (TNF-α, IL-1β) production, nitrotyrosine and PAR formation, NF-κB expression and apoptosis (Bax, Bcl-2) activation. This data clearly shows modulation of the inflammatory process, associated with MI-R injury, following administration of pistachios.

Almonds and cardiovascular health: A review.

Kalita, S., S. Khandelwal, J. Madan, H. Pandya, B. Sesikeran, K. Krishnaswamy, 2018. Almonds and cardiovascular health: A review. Nutrients. 468; doi:10.3390/nu10040468.

Several preventive strategies to reduce dyslipidemia have been suggested, of which dietary modification features as an important one. Dyslipidemia is a major risk factor for coronary heart disease and strategies to manage dyslipidemia have been shown to reduce the incidence of cardiovascular disease (CVD). Although there are proven pharmacological therapies to help manage this condition, nutritional interventions are a safer option to help prevent and manage dyslipidemia. Addition of almonds in the daily diet has been proposed to beneficially impact the lipid profile. This review critically examines the available evidence assessing the effect of almonds on dyslipidemia in the South Asian (particularly Indian) context. An extensive review comprised of epidemiological studies, clinical trials, meta-analyses, and systematic reviews was conducted from published literature from across the world. Studies examining the effect of almonds on different aspects of dyslipidemia viz. high low-density lipoprotein-cholesterol (LDL-C), low high-density lipoprotein-cholesterol (HDL-C), triglyceridaemia, and high total cholesterol levels have been included. In several studies, almonds have been shown to reduce LDL-C—which is a known risk factor for CHD—and the effect of almonds has been well documented in systematic reviews and meta-analysis of clinical trials. Addition of almonds in the diet has been shown to not only to reduce LDL-C levels, but also to maintain HDL-C levels. This review provides information about the use of this simple nutritional strategy which may help manage known major risk factors for heart disease, such as high LDL-C and low HDL-C levels especially in the context of South Asians.

Glucoregulatory and cardiometabolic profiles of almond vs. cracker snacking for 8 weeks in young adults: A randomized controlled trial.

Dhillon, J., M. Thorwald, N. De La Cruz, E. Vu, S.A. Asghar, Q. Kuse, L.K. Diaz Rios, R.M. Ortiz, 2018. Glucoregulatory and cardiometabolic profiles of almond vs. cracker snacking for 8 weeks in young adults: A randomized controlled trial. Nutrients. 10, 960; doi:10.3390/nu10080960

The transition to nutritional independence makes new college students vulnerable to alterations in eating patterns, which can increase the risk of cardiometabolic disorders. The aim of the study was to examine the potential benefits of almond vs. cracker snacking in improving glucoregulatory and cardiometabolic profiles in new college students. A randomized controlled, parallel-arm, 8-week intervention of 73 college students (BMI: 18–41 kg/m2) with no cardiometabolic disorders was conducted. Participants were randomized into either an almond snack group (56.7 g/day; 364 kcal; n = 38) or Graham cracker control group (77.5 g/day; 338 kcal/d; n = 35). Chronic, static changes were assessed from fasting serum/plasma samples at baseline, and after 4 and 8 weeks. Acute, dynamic effects were assessed during a 2-h oral glucose tolerance test (OGTT) at 8 weeks. Almond snacking resulted in a smaller decline in HDL cholesterol over 8 weeks (13.5% vs. 24.5%, p < 0.05), 13% lower 2-h glucose area under the curve (AUC), 34% lower insulin resistance index (IRI) and 82% higher Matsuda index (p < 0.05) during the OGTT, despite similar body mass gains over 8 weeks compared with the cracker group. In general, both almond and cracker snacking reduced fasting glucose, and LDL cholesterol. Conclusions: Incorporating a morning snack in the dietary regimen of predominantly breakfast-skipping, first-year college students had some beneficial effects on glucoregulatory and cardiometabolic health. Almond consumption has the potential to benefit postprandial glucoregulation in this cohort. These responses may be influenced by cardiometabolic risk factor status.

The effect of long-term weight-loss intervention strategies on the dynamics of pancreatic-fat and morphology: An MRI RCT study.

Tene, L., I. Shelef, D. Schwarzfuchs, Y. Gepner, A.Y. Meir, G. Tsaban, H. Zelicha, A. Bilitzky, O. Komy, N. Cohen, N. Bril, M. Rein, D. Serfaty, S. Kenigsbuch, Y. Chassidim, B. Sarusy, U. Ceglarek, M. Stumvoll, M. Blüher, J. Thiery, M.J. Stampfer, A. Rudich, I. Shai, 2018. The effect of long-term weight-loss intervention strategies on the dynamics of pancreatic-fat and morphology: An MRI RCT study. Clinical Nutrition ESPEN. 24:82-89.

Background & aims: The ability to mobilize pancreatic-fat and the meaning of decreased fat in the pancreas remain controversial. We followed the dynamics of pancreatic-fat and its morphology during various long weight-loss induced lifestyle-interventions. Methods: In isolated workplace with monitored/provided lunch, we randomly assigned healthy persons with abdominal obesity or dyslipidemia for one of two 18-month equal-caloric diets: low-fat (LF) or Mediterranean/low-carbohydrate (Med/LC, with provided 1oz walnuts/day), with or without added moderate exercise (supervised gym membership). We used magnetic-resonance-imaging to quantify pancreatic-fat and morphology. Results: At baseline, 277 eligible participants (mean age = 48 years; 88% men; pancreatic-fat = 17.4 ± 5.1%) had higher pancreatic-fat in men (17.7 ± 4.9% vs 14.9 ± 5.5% in women; p = 0.004). Following 18-month intervention (adherence = 86.3%) and moderate weight-loss (mean = −3.0 ± 5.5 kg), pancreatic-fat decreased moderately but significantly (−0.26 ± 2.18% units; p = 0.049). Med/LC diet induced a greater decrease in pancreatic-fat compared to LF (p = 0.043), and the combination of Med/LC diet + exercise exhibited the highest reduction (−0.69% units) as compared to LF diet without exercise (+0.12%units; p = 0.027 between groups). In multivariate regression models, after further adjusted for visceral adipose-tissue (ΔVAT), pancreatic-fat loss associated with both decreases in pancreatic-morphology ratio (perimeter divided by area; beta = 0.361; p < 0.001) and superficial-subcutaneous adipose-tissue loss (beta = 0.242; p = 0.001), but not with changes in intrahepatic-fat (beta = −0.034; p = 0.638). Pancreatic-fat loss associated with increased intake of polyunsaturated-fat (beta = −0.137; p = 0.032), as with improved high-density lipoprotein-cholesterol (HDL; beta = −0.156; p = 0.023) and triglycerides/HDL ratio (beta = 0.162; p = 0.015), independently of ΔVAT, but not with glycemic–control parameters (e.g. HbA1c, HOMA-IR and HOMA-beta; p > 0.2 for all). Conclusions: Pancreatic-fat loss is mainly associated with improved lipid, rather than glycemic profiles. Med/LC diet, mostly with exercise, may benefit pancreatic-fat loss. Pancreatic-morphology could serve as a biomarker of pancreatic-fat state.

Daily walnut consumption favourably changed lipid profiles among Korean subjects with higher waist circumference.

Song, E.K., Y. Liu, H.S. Kim, H. Park, 2018. Daily walnut consumption favourably changed lipid profiles among Korean subjects with higher waist circumference. Acta Scientific Nutritional Health. 2.5:21-26.

Even though many studies have shown that walnuts have beneficial effects on lipid profiles in various populations, there have been limited data on the effects of walnuts in Korean populations. We examined not only the effects of walnut intake on lipid profiles among Korean adults but also focused on the sub-classification by waist circumference (WC). 89 subjects out of 119 completed trial with daily consumption of 45 g of walnuts for 16 weeks. Blood lipid profiles including triglycerides (TG), non-HDL cholesterol (non-HDL-C), LDL cholesterol (LDL-C), total cholesterol (TC), and HDL cholesterol (HDL-C), apolipoprotein B, anthropometric measurements (WC, weight, body mass index (BMI) and blood pressure) and glucose metabolism parameters including fasting blood sugar and insulin levels were assessed. Whose WC was greater than 85 cm for female and 90 cm for male were classified as higher WC group (n=48) and others were classified as normal WC group (n=41). Blood levels of non-HDL-C, LDL-C, TC and apolipoprotein B were improved after daily consumption of 45 g of walnuts (P=0.003, P=0.011, P=0.002, and P=0.012, respectively) compared to baseline levels. Systolic blood pressure, TG, non-HDL-C, LDL-C and TC were significantly decreased in the higher WC groups (P=0.048, P=0.002, P=0.002 and P=0.001, respectively) compared to normal WC group. The results suggest that consuming 45 g of walnuts daily for 16 weeks had beneficial effects on lipid profiles in general, and these results were even much stronger among the subjects with abdominal obesity as waist circumference compared to those with non-abdominal obesity.