Archive

Effects of supplementing the usual diet with a daily dose of walnuts for two years on metabolic syndrome and its components in an elderly cohort.

Al Abdrabalnabi, A., S. Rajaram, E. Bitok, K. Oda, W.L. Beeson, A. Kaur, M. Cofán, M. Serra-Mir, I. Roth, E. Ros, J. Sabaté, 2020. Effects of supplementing the usual diet with a daily dose of walnuts for two years on metabolic syndrome and its components in an elderly cohort. Nutrients. 11;12(2). pii: E451. doi: 10.3390/nu12020451.

Accumulating evidence links nut consumption with an improved risk of metabolic syndrome (MetS); however, long-term trials are lacking. We examined the effects of a daily dose of walnuts for two years on MetS in a large elderly cohort. A total of 698 healthy elderly participants were randomly assigned to either a walnut supplemented or a control diet. The participants in the walnut group were provided with packaged walnuts (1, 1.5, or 2 oz. or ~15% of energy) and asked to incorporate them into their daily habitual diet. The participants in the control group were asked to continue with their habitual diet and abstain from eating walnuts and other tree nuts. Intake of n-3 fatty acid supplements was not permitted in either group. Fasting blood chemistries, blood pressure, and anthropometric measurements were obtained at baseline and at the end of intervention. A total of 625 participants (67% women, mean age 69.1 y) completed this two-year study (90% retention rate). Triglycerides decreased in both walnut (-.94 mg/dl) and control (-0.96 mg/dl) groups, with no significant between-group differences. There was a non-significant decrease in systolic and diastolic blood pressure in the walnut group (-1.30 and -0.71 mm Hg, respectively) and no change in the control group. Fasting blood glucose decreased by ~1 point in both the walnut and control groups. There were no significant between-group differences in the development or reversion of MetS. In conclusion, supplementing the diet of older adults with a daily dose of walnuts had no effect on MetS status or any of its components, although the walnut group tended to have lower blood pressure.

An almond-based low carbohydrate diet improves depression and glycometabolism in patients with Type 2 diabetes through modulating gut microbiota and GLP-1: A randomized controlled trial.

Ren, M., H. Zhang, J. Qi, A. Hu, Q. Jiang, Y. Hou, Q. Feng, O. Ojo, X. Wang, 2020. An almond-based low carbohydrate diet improves depression and glycometabolism in patients with Type 2 diabetes through modulating gut microbiota and GLP-1: A randomized controlled trial. Nutrients. 12(10):3036. doi: 10.3390/nu12103036.

Background: A low carbohydrate diet (LCD) is more beneficial for the glycometabolism in type 2 diabetes (T2DM) and may be effective in reducing depression. Almond, which is a common nut, has been shown to effectively improve hyperglycemia and depression symptoms. This study aimed to determine the effect of an almond-based LCD (a-LCD) on depression and glycometabolism, as well as gut microbiota and fasting glucagon-like peptide 1 (GLP-1) in patients with T2DM. Methods: This was a randomized controlled trial which compared an a-LCD with a low-fat diet (LFD). Forty-five participants with T2DM at a diabetes club and the Endocrine Division of the First and Second Affiliated Hospital of Soochow University between December 2018 to December 2019 completed each dietary intervention for 3 months, including 22 in the a-LCD group and 23 in the LFD group. The indicators for depression and biochemical indicators including glycosylated hemoglobin (HbA1c), gut microbiota, and GLP-1 concentration were assessed at the baseline and third month and compared between the two groups. Results: A-LCD significantly improved depression and HbA1c (p <0.01). Meanwhile, a-LCD significantly increased the short chain fatty acid (SCFAs)-producing bacteria RoseburiaRuminococcus and Eubacterium. The GLP-1 concentration in the a-LCD group was higher than that in the LFD group (p <0.05). Conclusions: A-LCD could exert a beneficial effect on depression and glycometabolism in patients with T2DM. We speculate that the role of a-LCD in improving depression in patients with T2DM may be associated with it stimulating the growth of SCFAs-producing bacteria, increasing SCFAs production and GPR43 activation, and further maintaining GLP-1 secretion. In future studies, the SCFAs and GPR43 activation should be further examined.

Brazil nut prevents oxidative DNA damage in type 2 diabetes patients.

Macan, T.P., T.A. de Amorim, A.P. Damiani, Â.C. da Luz Beretta, M.L. Magenis, T.C. Vilela, J.P. Teixeira, V.M. de Andrade, 2020. Brazil nut prevents oxidative DNA damage in type 2 diabetes patients. Drug Chem Toxicol. 1-7. doi: 10.1080/01480545.2020.1808667. 

The Brazil nut (Bertholletia excelsa, H.B.K.) originating from the Amazon region is one of the richest known sources of selenium (Se), a micronutrient that is essential and required for optimal physiological functioning. This mineral presents several health benefits, including improvement of the redox cellular status and maintenance of genomic stability. Knowing that type 2 diabetes mellitus (T2D) is strongly linked to oxidative stress and consequently DNA damage, the aim of this study was to assess the ex vivo antioxidative effects of Se through Brazil nut consumption and its potential in preventing oxidative DNA damage induced by H2O2. In order to accomplish this, the Comet assay (single-cell gel electrophoresis) was used to measure DNA damage in peripheral blood cells harvested before and after supplementation with Brazil nut. Comet assay was also applied ex vivo to measure the potential of Se to prevent oxidative damage to DNA induced by H2O2 in blood of type 2 diabetes patients collected before and after six months of supplementation with Brazil nut. We found that supplementation with Brazil nuts significantly increased serum Se levels. Furthermore, we observed a significant increase in fasting blood glucose after six months of consuming Brazil nuts; however, no significant effect was observed on the levels of glycated hemoglobin. Finally, we noticed that the cells were more resistant to H2O2-induced DNA damage after six months of supplementation with Brazil nut. Thus, consumption of Brazil nuts could decrease oxidative DNA damage in T2D patients, probably through the antioxidative effects of Se.

Effect of walnut consumption on markers of blood glucose control: A systematic review and meta-analysis.

Neale, E., V. Guan, L. Tapsell, Y. Probst, 2020. Effect of walnut consumption on markers of blood glucose control: A systematic review and meta-analysis.  Br J Nutr. 124(7):641-653.

Type 2 diabetes mellitus is a chronic disease increasing in global prevalence. Although habitual consumption of walnuts is associated with reduced risk of CVD, there is inconsistent evidence for the impact of walnut consumption on markers of glycaemic control. This systematic review and meta-analysis aimed to examine the effect of walnut consumption on markers of blood glucose control. A systematic search of Medline, PubMed, CINAHL and Cochrane databases (to 2 March 2019) was conducted. Inclusion criteria were randomised controlled trials conducted with adults which assessed the effect of walnut consumption on fasting blood glucose and insulin, glycated Hb and homeostatic model assessment of insulin resistance. Random effects meta-analyses were conducted to assess the weighted mean differences (WMD) for each outcome. Risk of bias in studies was assessed using the Cochrane Risk of Bias tool 2.0. Sixteen studies providing eighteen effect sizes were included in the review. Consumption of walnuts did not result in significant changes in fasting blood glucose levels (WMD: 0·331 mg/dl; 95 % CI −0·817, 1·479) or other outcome measures. Studies were determined to have either ‘some concerns’ or be at ‘high risk’ of bias. There was no evidence of an effect of walnut consumption on markers of blood glucose control. These findings suggest that the known favourable effects of walnut intake on CVD are not mediated via improvements in glycaemic control. Given the high risk of bias observed in the current evidence base, there is a need for further high-quality randomised controlled trials.

Walnut Consumption, Plasma Metabolomics, and Risk of Type 2 Diabetes and Cardiovascular Disease.

Guasch-Ferré, M., P. Hernández-Alonso, J.P. Drouin-Chartier, M. Ruiz-Canela, C. Razquin, E. Toledo, J. Li, C. Dennis, C. Wittenbecher, D. Corella, R. Estruch, M. Fitó, E. Ros, N. Babio, S.N. Bhupathiraju, C.B. Clish, L. Liang, M.A. Martínez-González, F.B. Hu, J. Salas-Salvadó, 2020. Walnut consumption, plasma metabolomics, and risk of type 2 diabetes and cardiovascular disease. J Nutr. 00:1–9.

Background: Walnut consumption is associated with lower risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). However, it is unknown whether plasma metabolites related to walnut consumption are also associated with lower risk of cardiometabolic diseases. Objectives: The study aimed to identify plasma metabolites associated with walnut consumption and evaluate the prospective associations between the identified profile and risk of T2D and CVD. Methods: The discovery population included 1833 participants at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) study with available metabolomics data at baseline. The study population included 57% women (baseline mean BMI (in kg/m2): 29.9; mean age: 67 y). A total of 1522 participants also had available metabolomics data at year 1 and were used as the internal validation population. Plasma metabolomics analyses were performed using LC-MS. Cross-sectional associations between 385 known metabolites and walnut consumption were assessed using elastic net continuous regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson correlation coefficients were assessed between metabolite weighted models and self-reported walnut consumption in each pair of training–validation data sets within the discovery population. We further estimated the prospective associations between the identified metabolite profile and incident T2D and CVD using multivariable Cox regression models. Results: A total of 19 metabolites were significantly associated with walnut consumption, including lipids, purines, acylcarnitines, and amino acids. Ten-CV Pearson correlation coefficients between self-reported walnut consumption and the plasma metabolite profile were 0.16 (95% CI: 0.11, 0.20) in the discovery population and 0.15 (95% CI: 0.10, 0.20) in the validation population. The metabolite profile was inversely associated with T2D incidence (HR per 1 SD: 0.83; 95% CI: 0.71, 0.97; P = 0.02). For CVD incidence, the HR per 1-SD was 0.71 (95% CI: 0.60, 0.85; P < 0.001). Conclusions: A metabolite profile including 19 metabolites was associated with walnut consumption and with a lower risk of incident T2D and CVD in a Mediterranean population at high cardiovascular risk.

Health benefits of pistachios consumption.

Terzo, S., S. Baldassano, G.F. Caldara, V. Ferrantelli, G. Lo Dico, F. Mulè, A. Amato, 2019. Health benefits of pistachios consumption. Nat Prod Res. 33(5):715-726.

The health benefits of nuts, mainly in relation to the improvement of dysmetabolic conditions such as obesity, type 2 diabetes mellitus and the related cardiovascular diseases, have been widely demonstrated. Compared to other nuts, pistachios have a lower fat and caloric content, and contain the highest levels of unsaturated fatty acids, potassium, γ-tocopherol, phytosterols and xanthophyll carotenoids, all substances that are well known for their antioxidant and anti-inflammatory actions. This variety of nutrients contributes to the growing body of evidence that the consumption of pistachios improves health, leading to a greater potential of healthy antioxidant and anti-inflammatory activity, glycemic control, and endothelial function. The present review examines the nutrients and phytochemicals present in pistachios as well as the potential health benefits of including pistachios in a diet.

Pistachio consumption modulates DNA oxidation and genes related to telomere maintenance: a crossover randomized clinical trial.

Canudas, S., P. Hernández-Alonso, S. Galié, J. Muralidharan, L. Morell-Azanza, G. Zalba, J. García-Gavilán, A. Martí, J. Salas-Salvadó, M. Bulló, 2019. Pistachio consumption modulates DNA oxidation and genes related to telomere maintenance: a crossover randomized clinical trial. Am J Clin Nutr. 0:1–8.

Background: Telomere attrition may play an important role in the pathogenesis and severity of type 2 diabetes (T2D), increasing the probability of β cell senescence and leading to reduced cell mass and decreased insulin secretion. Nutrition and lifestyle are known factors modulating the aging process and insulin resistance/secretion, determining the risk of T2D. Objectives: The aim of this study was to evaluate the effects of pistachio intake on telomere length and other cellular aging-related parameters of glucose and insulin metabolism. Methods: Forty-nine prediabetic subjects were included in a randomized crossover clinical trial. Subjects consumed a pistachio supplemented diet (PD, 50 E% [energy percentage] carbohydrates and 33 E% fat, including 57 g pistachios/d) and an isocaloric control diet (CD, 55 E% carbohydrates and 30 E% fat) for 4 mo each, separated by a 2-wk washout period. DNA oxidation was evaluated by DNA damage (via 8-hydroxydeoxyguanosine). Leucocyte telomere length and gene expression related to either oxidation, telomere maintenance or glucose, and insulin metabolism were analyzed by multiplexed quantitative reverse transcriptase-polymerase chain reaction after the dietary intervention. Results: Compared with the CD, the PD reduced oxidative damage to DNA (mean: −3.5%; 95% CI: −8.07%, 1.05%; P = 0.009). Gene expression of 2 telomere-related genes (TERT and WRAP53) was significantly upregulated (164% and 53%) after the PD compared with the CD (P = 0.043 and P = 0.001, respectively). Interestingly, changes in TERT expression were negatively correlated to changes in fasting plasma glucose concentrations and in the homeostatic model assessment of insulin resistance. Conclusions: Chronic pistachio consumption reduces oxidative damage to DNA and increases the gene expression of some telomere-associated genes. Lessening oxidative damage to DNA and telomerase expression through diet may represent an intriguing way to promote healthspan in humans, reversing certain deleterious metabolic consequences of prediabetes. This study was registered at clinicaltrials.gov as NCT01441921.

Food groups in dietary prevention of Type 2 diabetes.

Basiak-Rasała, A., D. Różańska, K. Zatońska, 2019. Food groups in dietary prevention of Type 2 diabetes. Rocz Panstw Zakl Hig 70(4):347-357.

According to the World Health Organization diabetes will be the seventh leading cause of death worldwide in 2030. Majority of diabetic patients suffer from type 2 diabetes (T2DM), which is mostly avoidable. The most important modifiable risk factors of type 2 diabetes are: overweight and obesity, improper diet, sedentary lifestyle and tobacco smoking. Even in prediabetic state, improving diet and physical activity can slow down or even stop progression to diabetes. In the view of health burden of diabetes it is essential to thoroughly investigate the risk factors and develop more specific preventive strategies. Recently published studies focus on food groups rather than individual products to assess the link between nutrition and risk of type 2 diabetes. Identifying food groups of possible beneficial and deleterious effect on the risk of type 2 diabetes could facilitate the dietary counselling. The aim of the overview is to summarize the possible association between consumption of food groups on the risk of type 2 diabetes on the basis of available literature. Observations from studies and meta-analyses indicate on an inverse association between consumption of fresh vegetables and fruit, whole grains, lean dairy, fish, nuts and the risk of type 2 diabetes. Food groups that seemed to increase the risk of type 2 diabetes are: red and processed meat, refined grains, sugar-sweetened beverages. It is important to note, that no individual nutrients, but diverse dietary pattern, composed of every recommended food group in adequate amounts can contribute to healthy lifestyle and T2DM prevention.

Effects of consuming almonds on insulin sensitivity and other cardiometabolic health markers in adults with prediabetes.

Palacios, O.M., K.C. Maki, D. Xiao, M.L. Wilcox, M.R. Dicklin, M. Kramer, R. Trivedi, B. Burton-Freeman, I. Edirisinghe, 2019. Effects of consuming almonds on insulin sensitivity and other cardiometabolic health markers in adults with prediabetes. Journal of the American College of Nutrition. doi:10.1080/07315724.2019.1660929.

Objective: This study was designed to assess the effects of replacing high-carbohydrate (CHO) foods with raw almonds on insulin sensitivity and cardiometabolic health markers in overweight or obese adults with prediabetes. Method: This randomized crossover study consisted of two 6-week dietary intervention periods, separated by a ≥ 4-week washout. Subjects incorporated 1.5oz of raw almonds twice daily or isocaloric CHO-based foods into their diets, with instructions to maintain body weight. Dietary intakes as well as insulin sensitivity, CHO metabolism indices, lipoprotein lipids and particles, and inflammatory markers were assessed. Results: Thirty-three subjects (17 male, 16 female), mean age 48.3±2.2years and body mass index 30.5±0.7kg/m2, provided evaluable data. Compared to CHO, almonds resulted in significantly (p<0.01) higher intakes of protein, fat (unsaturated fatty acids), fiber, and magnesium and significantly (p<0.001) lower intakes of CHO and sugars. No differences were observed between diet conditions for changes from baseline in the insulin sensitivity index from a short intravenous glucose tolerance test or other indices of glucose homeostasis. No significant differences were observed in biomarkers of cardiovascular risk except that the CHO intervention led to a shift toward a higher concentration of cholesterol in small, dense low-density lipoprotein subfraction 3+4 (LDL3+4) particles (p = 0.024 vs almonds). Conclusions: Intake of 3.0 oz/d raw almonds, vs energy-matched CHO foods, improved the dietary nutrient profile, but did not significantly affect insulin sensitivity and most markers of cardiometabolic health in overweight and obese men and women with prediabetes.

The resulting variation in nutrient intake with the inclusion of walnuts in the diets of adults at risk for type 2 diabetes: A randomized, controlled, crossover trial.

Njike, V.Y., V.C. Costales, P. Petraro, A. Annam, N. Yarandi, D.L. Katz, 2019. The resulting variation in nutrient intake with the inclusion of walnuts in the diets of adults at risk for type 2 diabetes: A randomized, controlled, crossover trial. Am J Health Promot. 33(3):430-438.

Purpose: We previously demonstrated that including walnuts in the diets of adults at risk for type 2 diabetes mellitus (T2DM) led to improved overall diet quality. This report examines the specific changes in their nutrient intake. Design: This was a randomized, controlled, modified Latin square parallel design trial with 2 treatment arms. Participants were randomized to walnut intake with, or without, dietary advice to regulate caloric intake. Within each treatment arm, they were further randomized to one of 2 sequence permutations (walnut-included/walnut-excluded or walnut-excluded/walnut-included diet), with a 3-month washout between treatment phases. Setting: Community hospital in Lower Naugatuck Valley in Connecticut. Participants: Cohort of 112 participants (31 men and 81 women) at risk for T2DM. Intervention: Participants included 56 g (366 kcal) of walnuts in their daily diets for 6 months. Measures: Nutrient intake was assessed using web-based Automated Self-Administered 24-Hour Dietary Assessment. Analysis: Data were analyzed using generalized linear models. Results: Walnut inclusion led to increased intake of total fat, calcium, magnesium, thiamin, total saturated fatty acids, and monounsaturated and polyunsaturated fatty acids (379.0 ± 90.3 g vs -136.5 ± 92.7 g, P < .01; 230.7 ± 114.2 mg vs -95.2 ± 117.4 mg, P = .05; 111.0 ± 33.9 mg vs -32.3 ± 34.9 mg, P < .01; 0.28 ± 0.2 mg vs -0.47 ± 0.2 mg, P = .02; 8.6 ± 3.4 g vs -1.1 ± 3.5 g, P =.05; 6.3 ± 3.9 g vs -6.3 ± 4.0 g, P = .03; and 25.4 ± 4.0 vs -6.6 ± 4.2 g, P < .01, respectively). Vitamin C intake decreased (-65.3 ± 55.3 mg vs 98.9 ± 56.8 mg, P = .04). Protein intake increased from baseline with the inclusion of walnuts (20.0 ± 8.8 g, P < .05). Walnut inclusion led to an increase in total calories consumed when caloric intake is not regulated. Conclusion: Including walnuts in the diets of these adults led to increased dietary intake of some nutrients associated with lower risk of developing T2DM and other cardiometabolic risk factors.