Creedon, A.C., E.S. Hung, S.E. Berry, K. Whelan, 2020. Nuts and their effect on gut microbiota, gut function and symptoms in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients. 12, 2347; doi:10.3390/nu12082347
Nuts contain fibre, unsaturated fatty acids and polyphenols that may impact the composition of the gut microbiota and overall gut health. This study aimed to assess the impact of nuts on gut microbiota, gut function and gut symptoms via a systematic review and meta-analysis of randomised controlled trials (RCTs) in healthy adults. Eligible RCTs were identified by systematic searches of five electronic databases, hand searching of conference abstracts, clinical trials databases, back-searching reference lists and contact with key stakeholders. Eligible studies were RCTs administering tree nuts or peanuts in comparison to control, measuring any outcome related to faecal microbiota, function or symptoms. Two reviewers independently screened papers, performed data extraction and risk of bias assessment. Outcome data were synthesised as weighted mean difference (WMD) or standardised mean difference (SMD) using a random effects model. This review was registered on PROSPERO (CRD42019138169). Eight studies reporting nine RCTs were included, investigating almonds (n = 5), walnuts (n = 3) and pistachios (n = 1). Nut consumption significantly increased Clostridium (SMD: 0.40; 95% CI, 0.10, 0.71; p = 0.01), Dialister (SMD: 0.44; 95% CI, 0.13, 0.75; p = 0.005), Lachnospira (SMD: 0.33; 95% CI, 0.02, 0.64; p = 0.03) and Roseburia (SMD: 0.36; 95% CI, 0.10, 0.62; p = 0.006), and significantly decreased Parabacteroides (SMD: −0.31; 95% CI, −0.62, −0.00; p = 0.05). There was no effect of nuts on bacterial phyla, diversity or stool output. Further parallel design RCTs, powered to detect changes in faecal microbiota and incorporating functional and clinical outcomes, are needed.
Tindall, A.M., C.J. McLimans, K.S. Petersen, P.M. Kris-Etherton, R. Lamendella, 2019. Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr. 150(4):806-817.
Background: It is unclear whether the favorable effects of walnuts on the gut microbiota are attributable to the fatty acids, including α-linolenic acid (ALA), and/or the bioactive compounds and fiber. Objective: This study examined between-diet gut bacterial differences in individuals at increased cardiovascular risk following diets that replace SFAs with walnuts or vegetable oils.Methods: Forty-two adults at cardiovascular risk were included in a randomized, crossover, controlled-feeding trial that provided a 2-wk standard Western diet (SWD) run-in and three 6-wk isocaloric study diets: a diet containing whole walnuts (WD; 57-99 g/d walnuts; 2.7% ALA), a fatty acid-matched diet devoid of walnuts (walnut fatty acid-matched diet; WFMD; 2.6% ALA), and a diet replacing ALA with oleic acid without walnuts (oleic acid replaces ALA diet; ORAD; 0.4% ALA). Fecal samples were collected following the run-in and study diets to assess gut microbiota with 16S rRNA sequencing and Qiime2 for amplicon sequence variant picking. Results: Subjects had elevated BMI (30 ± 1 kg/m2), blood pressure (121 ± 2/77 ± 1 mmHg), and LDL cholesterol (120 ± 5 mg/dL). Following the WD, Roseburia [relative abundance (RA) = 4.2%, linear discriminant analysis (LDA) = 4], Eubacterium eligensgroup (RA = 1.4%, LDA = 4), LachnospiraceaeUCG001 (RA = 1.2%, LDA = 3.2), Lachnospiraceae UCG004 (RA = 1.0%, LDA = 3), and Leuconostocaceae (RA = 0.03%, LDA = 2.8) were most abundant relative to taxa in the SWD (P ≤ 0.05 for all). The WD was also enriched in Gordonibacter relative to the WFMD. Roseburia (3.6%, LDA = 4) and Eubacterium eligensgroup (RA = 1.5%, LDA = 3.4) were abundant following the WFMD, and Clostridialesvadin BB60group (RA = 0.3%, LDA = 2) and gutmetagenome (RA = 0.2%, LDA = 2) were most abundant following the ORAD relative to the SWD (P ≤ 0.05 for all). Lachnospiraceae were inversely correlated with blood pressure and lipid/lipoprotein measurements following the WD. Conclusions: The results indicate similar enrichment of Roseburia following the WD and WFMD, which could be explained by the fatty acid composition. Gordonibacter enrichment and the inverse association between Lachnospiraceae and cardiovascular risk factors following the WD suggest that the gut microbiota may contribute to the health benefits of walnut consumption in adults at cardiovascular risk. This trial was registered at clinicaltrials.gov as NCT02210767.
McArthur, B.M., R.D. Mattes, R.V. Considine, 2018. Mastication of nuts under realistic eating conditions: implications for energy balance. Nutrients. 10(6), 710; https://doi.org/10.3390/nu10060710.
The low digestibility and high satiety effects of nuts have been partly attributed to mastication. This work examines chewing forces and the bolus particle size of nuts (walnuts, almonds, pistachios) varying in physical properties under different conditions (with and without water, juice, sweetened yogurt and plain yogurt) along with satiety sensations and gut hormone concentrations following walnut consumption (whole or butter). In a randomized, cross-over design with 50 adults (25 males, 25 females; Body Mass Index (BMI) 24.7 _ 3.4 kg/m2; age: 18–52 years old (y/o), the chewing forces and particle size distribution of chewed nuts were measured under different chewing conditions. Appetite sensations were measured at regular intervals for 3 h after nut intake, and plasma samples were collected for the measurement of glucose, insulin and Glucagon-like peptide-1 (GLP-1). The three nuts displayed different particle sizes at swallowing though no differences in chewing forces were observed. Walnuts with yogurt yielded larger particle sizes than the other treatments. Particle size was not correlated with either food palatability or flavor. Fullness sensations were higher after whole nut than nut butter consumption though there were no significant changes in glucose, insulin, or GLP-1 concentrations under any condition. Changing the conditions at swallowing might influence the release of energy from nuts.
Holscher, H.D., H.M. Guetterman, K.S. Swanson, R. An,N.R. Matthan, A.H. Lichtenstein, J.A. Novotny, D.J. Baer, 2018. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: a randomized controlled trial. J Nutr. doi: 10.1093/jn/nxy004. [Epub ahead of print]
Background: Epidemiologic data suggest that diets rich in nuts have beneficial health effects, including reducing total and cause-specific mortality from cancer and heart disease. Although there is accumulating preclinical evidence that walnuts beneficially affect the gastrointestinal microbiota and gut and metabolic health, these relations have not been investigated in humans. Objective: We aimed to assess the impact of walnut consumption on the human gastrointestinal microbiota and metabolic markers of health. Methods: A controlled-feeding, randomized crossover study was undertaken in healthy men and women [n = 18; mean age = 53.1 y; body mass index (kg/m2): 28.8]. Study participants received isocaloric diets containing 0 or 42 g walnuts/d for two 3-wk periods, with a 1-wk washout between diet periods. Fecal and blood samples were collected at baseline and at the end of each period to assess secondary outcomes of the study, including effects of walnut consumption on fecal microbiota and bile acids and metabolic markers of health. Results:
Compared with after the control period, walnut consumption resulted in a 49-160% higher relative abundance of Faecalibacterium, Clostridium, Dialister, and Roseburia and 16-38% lower relative abundances of Ruminococcus, Dorea, Oscillospira, and Bifidobacterium (P < 0.05). Fecal secondary bile acids, deoxycholic acid and lithocholic acid, were 25% and 45% lower, respectively, after the walnut treatment compared with the control treatment (P < 0.05). Serum LDL cholesterol and the non-cholesterol sterol campesterol concentrations were 7% and 6% lower, respectively, after walnut consumption compared with after the control treatment (P < 0.01). Conclusions: Walnut consumption affected the composition and function of the human gastrointestinal microbiota, increasing the relative abundances of Firmicutes species in butyrate-producing Clostridium clusters XIVa and IV, including Faecalibacterium and Roseburia, and reducing microbially derived, proinflammatory secondary bile acids and LDL cholesterol. These results suggest that the gastrointestinal microbiota may contribute to the underlying mechanisms of the beneficial health effects of walnut consumption.
Bamberger, C., A. Rossmeier, K. Lechner, L. Wu, E. Waldmann, S. Fischer, R.G. Stark, J. Altenhofer, K. Henze, K.G. Parhofer, 2018. A walnut-enriched diet affects gut microbiome in healthy Caucasian subjects: A randomized, controlled trial. Nutrients. 10(2). pii: E244. doi: 10.3390/nu10020244.
Regular walnut consumption is associated with better health. We have previously shown that eight weeks of walnut consumption (43 g/day) significantly improves lipids in healthy subjects. In the same study, gut microbiome was evaluated. We included 194 healthy subjects (134 females, 63 ± 7 years, BMI 25.1 ± 4.0 kg/m²) in a randomized, controlled, prospective, cross-over study. Following a nut-free run-in period, subjects were randomized to two diet phases (eight weeks each); 96 subjects first followed a walnut-enriched diet (43 g/day) and then switched to a nut-free diet, while 98 subjects followed the diets in reverse order. While consuming the walnut-enriched diet, subjects were advised to either reduce fat or carbohydrates or both to account for the additional calories. Fecal samples were collected from 135 subjects at the end of the walnut-diet and the control-diet period for microbiome analyses. The 16S rRNA gene sequencing data was clustered with a 97% similarity into Operational Taxonomic Units (OTUs). UniFrac distances were used to determine diversity between groups. Differential abundance was evaluated using the Kruskal-Wallis rank sum test. All analyses were performed using Rhea. Generalized UniFrac distance shows that walnut consumption significantly affects microbiome composition and diversity. Multidimensional scaling (metric and non-metric) indicates dissimilarities of approximately 5% between walnut and control (p = 0.02). The abundance of Ruminococcaceae and Bifidobacteria increased significantly (p < 0.02) while Clostridium sp. cluster XIVa species (Blautia; Anaerostipes) decreased significantly (p < 0.05) during walnut consumption. The effect of walnut consumption on the microbiome only marginally depended on whether subjects replaced fat, carbohydrates or both while on walnuts. Daily intake of 43 g walnuts over eight weeks significantly affects the gut microbiome by enhancing probiotic- and butyric acid-producing species in healthy individuals. Further evaluation is required to establish whether these changes are preserved during longer walnut consumption and how these are linked to the observed changes in lipid metabolism.
Byerley, L.O., D. Samuelson, E. Blanchard, M. Luo, B.N. Lorenzen, S. Banks, M.A. Ponder, D.A. Welsh, C.M. Taylor, 2017. Changes in the gut microbial communities following addition of walnuts to the diet. J Nutr Biochem. 48:94-102.
Walnuts are rich in omega-3 fatty acids, phytochemicals and antioxidants making them unique compared to other foods. Consuming walnuts has been associated with health benefits including a reduced risk of heart disease and cancer. Dysbiosis of the gut microbiome has been linked to several chronic diseases. One potential mechanism by which walnuts may exert their health benefit is through modifying the gut microbiome. This study identified the changes in the gut microbial communities that occur following the inclusion of walnuts in the diet. Male Fischer 344 rats (n=20) were randomly assigned to one of two diets for as long as 10 weeks: 1) walnut (W), and 2) replacement (R) in which the fat, fiber, and protein in walnuts were matched with corn oil, protein casein, and a cellulose fiber source. Intestinal samples were collected from the descending colon, the DNA isolated, and the V3-V4 hypervariable region of 16S rRNA gene deep sequenced on an Illumina MiSeq for characterization of the gut microbiota. Body weight and food intake did not differ significantly between the two diet groups. The diet groups had distinct microbial communities with animals consuming walnuts displaying significantly greater species diversity. Walnuts increased the abundance of Firmicutes and reduced the abundance of Bacteriodetes. Walnuts enriched the microbiota for probiotic-type bacteria including Lactobacillus, Ruminococcaceae, and Roseburia while significantly reducing Bacteroides and Anaerotruncus. The class Alphaproteobacteria was also reduced. Walnut consumption altered the gut microbial community suggesting a new mechanism by which walnuts may confer their beneficial health effects.
Lamuel-Raventos, R.M., M.-P. St. Onge, 2017. Prebiotic nut compounds and human microbiota. Critical Reviews in Food Science and Nutrition. 57(14): 3154–3163.
Nut consumption is clearly related to human health outcomes. Its beneficial effects have been mainly attributed to nut fatty acid profiles and content of vegetable protein, fiber, vitamins, minerals, phytosterols and phenolics. However, in this review we focus on the prebiotics properties in humans of the nonbioaccessible material of nuts (polymerized polyphenols and polysaccharides), which provides substrates for the human gut microbiota and on the formation of new bioactive metabolites and the absorption of that may partly explain the health benefits of nut consumption.
Singh, R.K., H.‑W. Chang , D. Yan, K.M. Lee, D. Ucmak, K. Wong, M. Abrouk, B. Farahnik, M. Nakamura, T.H. Zhu, T. Bhutani, W. Liao, 2017. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 15:73 DOI 10.1186/s12967-017-1175-y
Recent studies have suggested that the intestinal microbiome plays an important role in modulating risk of several chronic diseases, including inflammatory bowel disease, obesity, type 2 diabetes, cardiovascular disease, and cancer. At the same time, it is now understood that diet plays a significant role in shaping the microbiome, with experiments showing that dietary alterations can induce large, temporary microbial shifts within 24 h. Given this association, there may be significant therapeutic utility in altering microbial composition through diet. This review systematically evaluates current data regarding the effects of several common dietary components on intestinal microbiota. We show that consumption of particular types of food produces predictable shifts in existing host bacterial genera. Furthermore, the identity of these bacteria affects host immune and metabolic parameters, with broad implications for human health. Familiarity with these associations will be of tremendous use to the practitioner as well as the patient.
Strate, L.L., Y.L. Liu, S. Syngal, W.H. Aldoori, E.L. Giovannucci, 2008. Nut, corn, and popcorn consumption and the incidence of diverticular disease. JAMA. 300(8):907-914.
Context Patients with diverticular disease are frequently advised to avoid eating nuts, corn, popcorn, and seeds to reduce the risk of complications. However, there is little evidence to support this recommendation. Objective To determine whether nut, corn, or popcorn consumption is associated with diverticulitis and diverticular bleeding. Design and Setting The Health Professionals Follow-up Study is a cohort of US men followed up prospectively from 1986 to 2004 via self-administered questionnaires about medical (biennial) and dietary (every 4 years) information. Men reporting newly diagnosed diverticulosis or diverticulitis were mailed supplemental questionnaires. Participants The study included 47,228 men, aged 40 to 75 years who at baseline were free of diverticulosis or its complications, cancer, and inflammatory bowel disease and returned a food-frequency questionnaire. Main Outcome Measure Incident diverticulitis and diverticular bleeding. Results During 18 years of follow-up, there were 801 incident cases of diverticulitis and 383 incident cases of diverticular bleeding. We found inverse associations between nut and popcorn consumption and the risk of diverticulitis. The multivariate hazard ratios for men with the highest intake of each food (at least twice per week) compared with men with the lowest intake (less than once per month) were 0.80 (95% confidence interval, 0.63-1.01; P for trend = .04) for nuts and 0.72 (95% confidence interval, 0.56-0.92; P for trend = .007) for popcorn. No associations were seen between corn consumption and diverticulitis or between nut, corn, or popcorn consumption and diverticular bleeding or uncomplicated diverticulosis. Conclusions In this large, prospective study of men without known diverticular disease, nut, corn, and popcorn consumption did not increase the risk of diverticulosis or diverticular complications. The recommendation to avoid these foods to prevent diverticular complications should be reconsidered.
Tsai, C-J., M.F. Leitzmann, F.B. Hu, W.C. Willett, E.L. Giovannucci, 2004. Frequent nut consumption and decreased risk of cholecystectomy in women. Am J Clin Nutr. 80:76-81.
Background: Gallstone disease is a major source of morbidity in the developed countries. Nuts are rich in several compounds that may protect against gallstone disease. Objective: The association between nut intake and cholecystectomy was examined in a large cohort of women. Design: We prospectively studied nut (peanuts, other nuts, and peanut butter) consumption in relation to the risk of cholecystectomy in a cohort of 80 718 women from the Nurses’ Health Study who were 30–55 y old in 1980 and had no history of gallstone disease. As part of the Nurses’ Health Study, the women reported on questionnaires mailed to them every 2 y both their consumption of nuts and whether they had undergone cholecystectomy. The women were followed through 2000. Results: During 1 393 256 person-years of follow-up from 1980 to 2000, we documented 7831 cholecystectomies. After adjustment for age and other known or suspected risk factors, women who consumed ≥5 units of nuts (1 unit = 1 oz or 28.6 g nuts)/wk (frequent consumption) had a significantly lower risk of cholecystectomy (relative risk: 0.75; 95% CI: 0.66, 0.85; P for trend < 0.0001) than did women who never ate nuts or who ate <1 unit/mo (rare consumption). Further adjustment for fat consumption (saturated fat, trans fat, polyunsaturated fat, and monounsaturated fat) did not materially alter the relation. In analyses examining consumption of peanuts and other nuts separately, both were associated with a lower risk of cholecystectomy. Conclusion: In women, frequent nut consumption is associated with a reduced risk of cholecystectomy.