Archive

Profiling anticancer and antioxidant activities of phenolic compounds present in Black Walnuts (Juglans nigra) using a high-throughput screening approach.

Ho, K.-V., A. Roy, S. Foote, P.H. Vo, N. Lall, C.-H. Lin, 2020. Profiling anticancer and antioxidant activities of phenolic compounds present in Black Walnuts (Juglans nigra) using a high-throughput screening approach. Molecules. 25, 4516; doi:10.3390/molecules25194516

Our recent studies have demonstrated multiple health-promoting benefits from black walnut kernels. These biological functions of black walnuts are likely associated with their bioactive constituents. Characterization of phenolic compounds found in black walnut could point out underexplored bioactive activities of black walnut extracts and promote the development of novel applications of black walnut and its by-products. In the present study, we assessed bioactivity profiles of phenolic compounds identified in the kernels of black walnuts using a high-throughput screening (HTS) approach. Black walnut phenolic compounds were evaluated in terms of their total antioxidant capacity, antioxidant response element (ARE) induction, and anticancer activities. The anticancer activities were identified by evaluating the effects of the phenolic compounds on the growth of the tumorigenic alveolar epithelial cells (A549) and non-tumorigenic lung fibroblast cells (MRC-5). Out of 16 phenolic compounds tested, several compounds (penta-O-galloyl-β-d-glucose, epicatechin gallate, quercetin, (–)-epicatechin, rutin, quercetin 3-β-d-glucoside, gallic acid, (+)-catechin, ferulic acid, syringic acid) exerted antioxidant activities that were significantly higher compared to Trolox, which was used as a control. Two phenolic compounds, penta-O-galloyl-β-d-glucose and quercetin 3-β-d-glucoside, exhibited antiproliferative activities against both the tumorigenic alveolar epithelial cells (A549) and non-tumorigenic lung fibroblast cells (MRC-5). The antioxidant activity of black walnut is likely driven not only by penta-O-galloyl-β-d-glucose but also by a combination of multiple phenolic compounds. Our findings suggested that black walnut extracts possibly possess anticancer activities and supported that penta-O-galloyl-β-d-glucose could be a potential bioactive agent for the cosmetic and pharmaceutical industries.

Does ‘activating’ nuts affect nutrient bioavailability?

Kumari, S., A.R. Gray, K. Webster, K. Bailey, M. Reid, K.A. Han Kelvin, S.L. Tey, A. Chisholm, R.C. Brown, 2020. Does ‘activating’ nuts affect nutrient bioavailability? Food Chem. 319:126529. doi: 10.1016/j.foodchem.2020.126529. Epub 2020 Feb 29.

Claims in the lay literature suggest soaking nuts enhances mineral bioavailability. Research on legumes and grains indicate soaking reduces phytate levels, however, there is no evidence to support or refute these claims for nuts. We assessed the effects of different soaking regimes on phytate and mineral concentrations of whole and chopped almonds, hazelnuts, peanuts, and walnuts. The treatments were: 1. Raw; 2. soaked for 12 h in salt solution; 3. soaked for 4 h in salt solution; 4. soaked for 12 h in water. Phytate concentrations were analysed using high-performance liquid chromatography (HPLC) and minerals by inductively coupled plasma mass spectrometry (ICP-MS). Differences in phytate concentrations between treated and untreated nuts were small, ranging from -12% to +10%. Overall, soaking resulted in lower mineral concentrations, especially for chopped nuts, and did not improve phytate:mineral molar ratios. This research does not support claims that ‘activating’ nuts results in greater nutrient bioavailability.

Identification of plasma lipid metabolites associated with nut consumption in US men and women.

Malik, V.S., M. Guasch-Ferre, F.B. Hu, M.K. Townsend, O.A. Zeleznik, A.H. Eliassen, S.S. Tworoger, E.W. Karlson, K.H. Costenbader, A. Ascherio, K.M. Wilson, L.A. Mucci, E.L. Giovannucci, C.S. Fuchs, Y. Bao, 2019. Identification of plasma lipid metabolites associated with nut consumption in US men and women. J Nutr 149:1215–1221.

BACKGROUND: Intake of nuts has been inversely associated with risk of type 2 diabetes and cardiovascular disease, partly through inducing a healthy lipid profile. How nut intake may affect lipid metabolites remains unclear. OBJECTIVE: The aim of this study was to identify the plasma lipid metabolites associated with habitual nut consumption in US men and women. METHODS: We analyzed cross-sectional data from 1099 participants in the Nurses’ Health Study (NHS), NHS II, and Health Professionals Follow-up Study. Metabolic profiling was conducted on plasma by LC-mass spectrometry. Nut intake was estimated from food-frequency questionnaires. We included 144 known lipid metabolites that had CVs ≤25%. Multivariate linear regression was used to assess the associations of nut consumption with individual plasma lipid metabolites. RESULTS: We identified 17 lipid metabolites that were significantly associated with nut intake, based on a 1 serving (28 g)/d increment in multivariate models [false discovery rate (FDR) P value <0.05]. Among these species, 8 were positively associated with nut intake [C24:0 sphingomyelin (SM), C36:3 phosphatidylcholine (PC) plasmalogen-A, C36:2 PC plasmalogen, C24:0 ceramide, C36:1 PC plasmalogen, C22:0 SM, C34:1 PC plasmalogen, and C36:2 phosphatidylethanolamine plasmalogen], with changes in relative metabolite level (expressed in number of SDs on the log scale) ranging from 0.36 to 0.46 for 1 serving/d of nuts. The other 9 metabolites were inversely associated with nut intake with changes in relative metabolite level ranging from -0.34 to -0.44. In stratified analysis, 3 metabolites were positively associated with both peanuts and peanut butter (C24:0 SM, C24:0 ceramide, and C22:0 SM), whereas 6 metabolites were inversely associated with other nuts (FDR P value <0.05). CONCLUSIONS: A panel of lipid metabolites was associated with intake of nuts, which may provide insight into biological mechanisms underlying associations between nuts and cardiometabolic health. Metabolites that were positively associated with intake of nuts may be helpful in identifying potential biomarkers of nut intake.

Fatty acid bioaccessibility and structural breakdown from in vitro digestion of almond particles.

Swackhamer, C., Z. Zhang, A.Y. Tahab, G.M. Bornhorst, 2019. Fatty acid bioaccessibility and structural breakdown from in vitro digestion of almond particles. Food Funct. 10:5174–5187.

Previous studies have shown that the size of almond particles influences lipid bioaccessibility during digestion. However, the extent of structural breakdown of almond particles during gastric digestion and its impact on lipid bioaccessibility is unclear. In this study, in vitro digestion of almond particles was conducted using a dynamic model (Human Gastric Simulator) and a static model (shaking water bath). Structural breakdown of particles during the gastric phase occurred only in the Human Gastric Simulator, as evidenced by a reduction in particle size (15.89 ± 0.68 mm2 to 12.19 ± 1.29 mm2, p < 0.05). Fatty acid bioaccessibility at the end of the gastric phase was greater in the Human Gastric Simulator than in the shaking water bath (6.55 ± 0.85% vs. 4.54 ± 0.36%, p < 0.01). Results showed that the in vitro model of digestion which included peristaltic contractions (Human Gastric Simulator) led to breakdown of almond particles during gastric digestion which increased fatty acid bioaccessibility.