Archive

Almond bioaccessibility in a randomized crossover trial: is a calorie a calorie? 

Nishi, S. K., C.W.C. Kendall, R.P. Bazinet, A.J. Hanley, E.M. Comelli, D.J.A. Jenkins, J.L. Sievenpiper, 2021. Almond bioaccessibility in a randomized crossover trial: is a calorie a calorie? Mayo Clin. Proc. 96(9):2386–2397. https://doi.org/10.1016/j.mayocp.2021.01.026

Objective: To investigate the energy and macronutrient bioaccessibility of almonds in individuals with hyperlipidemia. Methods: In a previously reported randomized crossover trial, men and postmenopausal women with hyperlipidemia incorporated 3 isoenergetic supplements into a National Cholesterol Education Program Step 2 diet for 1 month each between September 20, 2000, and June 27, 2001. Supplements provided consisted of full-dose almonds (73±5 g/d), half-dose almonds (38±3 g/d) plus half-dose muffins, and full-dose muffins (control). Energy and macronutrients, including individual fatty acids, were measured in the dietary supplements and fecal samples using gas chromatography and Association of Official Analytical Chemists methods. Serum was measured for lipids and fatty acids. Bioaccessibility of energy and macronutrients from almond consumption was assessed from dietary intake (7-day food records) and fecal output. Results: Almond-related energy bioaccessibility was 78.5%±3.1%, with an average energy loss of 21.2%±3.1% (40.6 kcal/d in the full-dose almond phase). Bioaccessibility of energy and fat from the diet as a whole was significantly less with almond consumption (in both half- and full-dose phases) compared with the control. Bioaccessibility of fat was significantly different between treatment phases (P<.001) and on average lower by 5.1% and 6.3% in the half- and full-dose almond phases, respectively, compared with the control phase. Energy bioaccessibility was significantly different between the treatment phases (P=.02), decreasing by approximately 2% with the inclusion of the full dose of almonds compared with the control. Conclusion: Energy content of almonds may not be as bioaccessible in individuals with hyperlipidemia as predicted by Atwater factors, as suggested by the increased fat excretion with almond intake compared with the control.

Almond consumption affects fecal microbiota composition, stool pH, and stool moisture in overweight and obese adults with elevated fasting blood glucose: A randomized controlled trial.

Choo, J.M., C.D. Tran, N.D. Luscombe-Marsh, W. Stonehouse, J. Bowen, N. Johnson, C.H. Thompson, E.-J. Watson, G.D. Brinkworth, G.B. Rogers, 2021. Almond consumption affects fecal microbiota composition, stool pH, and stool moisture in overweight and obese adults with elevated fasting blood glucose: A randomized controlled trial. Nutr Res. 85:47-59.

Regular almond consumption has been shown to improve body weight management, lipid profile and blood glucose control. We hypothesized that almond consumption would alter fecal microbiota composition, including increased abundance and activity of potentially beneficial bacterial taxa in adults who are overweight and obese with elevated fasting blood glucose. A total of 69 adults who were overweight or obese with an elevated plasma glucose (age: 60.8 ± 7.4, BMI ≥27 kg/m2, fasting plasma glucose ≥5.6 to <7.0 mmol/L) were randomized to daily consumption of either 2 servings of almonds (AS:56 g/day) or an isocaloric, high carbohydrate biscuit snack for 8 weeks. AS but not biscuit snack experienced significant changes in microbiota composition (P= .011) and increases in bacterial richness, evenness, and diversity (P< .01). Increases in both the relative and absolute abundance of operational taxonomic units in the Ruminococcaceae family, including Ruminiclostridium (false discovery rate P = .002), Ruminococcaceae NK4A214 (P = .002) and Ruminococcaceae UCG-003 (P = .002) were the principal drivers of microbiota-level changes. No changes in fecal short chain fatty acid levels, or in the carriage of the gene encoding butyryl-CoA:acetate CoA-transferase (an enzyme involved in butyrate synthesis) occurred. Almond consumption was not associated with reduced gut permeability, but fecal pH (P= .0006) and moisture content (P = .027) decreased significantly in AS when compared to BS. Regular almond consumption increased the abundance of potentially beneficial ruminococci in the fecal microbiota in individuals with elevated blood glucose. However, fecal short-chain fatty acid levels remained unaltered and the capacity for such microbiological effects to precipitate host benefit is not known.

Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial.

Yaskolka M.A., E. Rinott, G. Tsaban, H. Zelicha, A. Kaplan, P. Rosen, I. Shelef, I. Youngster, A. Shalev, M. Blüher, U. Ceglarek, M. Stumvoll, K. Tuohy, C. Diotallevi, U. Vrhovsek, F. Hu, M. Stampfer, I. Shai, 2021. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut. 0:1–11. doi:10.1136/gutjnl-2020-323106.

Objective: To examine the effectiveness of green-Mediterranean (MED) diet, further restricted in red/ processed meat, and enriched with green plants and polyphenols on non-alcoholic fatty liver disease (NAFLD), reflected by intrahepatic fat (IHF) loss. Design: For the DIRECT-PLUS 18-month randomized clinical trial, we assigned 294 participants with abdominal obesity/dyslipidaemia into healthy dietary guidelines (HDG), MED and green-MED weight-loss diet groups, all accompanied by physical activity. Both isocaloric MED groups consumed 28 g/day walnuts (+440 mg/day polyphenols provided). The green-MED group further consumed green tea (3–4 cups/day) and Mankai (a Wolffia globosa aquatic plant strain; 100 g/ day frozen cubes) green shake (+1240 mg/day total polyphenols provided). IHF% 18-month changes were quantified continuously by proton magnetic resonance spectroscopy (MRS). Results: Participants (age=51 years; 88% men; body mass index=31.3 kg/m2; median IHF%=6.6%; mean=10.2%; 62% with NAFLD) had 89.8% 18 month retention-rate, and 78% had eligible follow-up MRS. Overall, NAFLD prevalence declined to: 54.8% (HDG), 47.9% (MED) and 31.5% (green-MED), p=0.012 between groups.  Despite similar moderate weight-loss in both MED groups, green-MED group achieved almost double IHF% loss (−38.9% proportionally), as compared with MED (−19.6% proportionally; p=0.035 weight loss adjusted) and HDG (−12.2% proportionally; p<0.001). After 18 months, both MED groups had significantly higher total plasma polyphenol levels versus HDG, with higher detection of Naringenin and 2-5-dihydroxybenzoic- acid in green-MED. Greater IHF% loss was independently associated with increased Mankai and walnuts intake, decreased red/processed meat consumption, improved serum folate and adipokines/lipids biomarkers, changes in microbiome composition (beta-diversity) and specific bacteria (p<0.05 for all). Conclusion: The new suggested strategy of green-Mediterranean diet, amplified with green plant-based proteins/polyphenols as Mankai, green tea, and walnuts, and restricted in red/processed meat can double IHF loss than other healthy nutritional strategies and reduce NAFLD in half.

Energy extraction from nuts: walnuts, almonds, pistachios.

McArthur, B., R. Mattes, 2020. Energy extraction from nuts: walnuts, almonds, pistachios. Br J Nutr. 123(4):361-371.

The bioaccessibility of fat has implications for satiety and postprandial lipidemia. The prevailing view holds that the integrity of plant cell wall structure is the primary determinant of energy and nutrient extraction from plant cells as they pass through the gastrointestinal tract. However, comparisons across nuts (walnuts, almonds, pistachios) with varying physical properties do not support this view. In this study, masticated samples of three nuts from healthy adults were exposed to a static model of gastric digestion followed by simulated intestinal digestion. Primary outcomes were particle size and lipid release at each phase of digestion. Walnuts produced a significantly larger particle size post-mastication compared to almonds. Under gastric and intestinal conditions, the particle size was larger for walnuts compared to pistachios and almonds (P<0.05). However, the masticated and digesta particle sizes were not related to the integrity of cell walls nor lipid release. The total lipid release was comparable between nuts after the in vitro intestinal phase (P>0.05). Microstructural examination showed ruptured and fissured cell walls that would allow digestion of cellular contents and this may be governed by internal cellular properties such as oil body state. Furthermore, the cell walls of walnuts tend to rupture rather than separate and as walnut tissue passes through the gastrointestinal track, lipids tend to coalesce reducing digestion efficiency.

The beneficial effects of nutraceuticals and natural products on small dense LDL levels, LDL particle number and LDL particle size: a clinical review.

Talebi, S., M. Bagherniya, S.L. Atkin, G. Askari, H.M. Orafai, A. Sahebkar, 2020. The beneficial effects of nutraceuticals and natural products on small dense LDL levels, LDL particle number and LDL particle size: a clinical review. Lipids in Health and Disease. 19:66
https://doi.org/10.1186/s12944-020-01250-6.

Cardiovascular diseases (CVDs) are globally the major causes of morbidity and mortality. Evidence shows that smaller and denser low-dense lipoprotein (sdLDL) particles are independent atherogenic risk factors for CVD due to their greater susceptibility to oxidation, and permeability in the endothelium of arterial walls. sdLDL levels are an independent risk factor and of more predictive value than total LDL-C for the assessment of coronary artery disease and metabolic syndrome. Functional food ingredients have attracted significant attention for the management of dyslipidemia and subsequently increase cardio-metabolic health. However, to date there is no study that has investigated the effect of these bioactive natural compounds on sdLDL levels. Therefore, the aim of the present review is to summarize the evidence accrued on the effect of special dietary ingredients such as omega-3 polyunsaturated fatty acids, nutraceuticals and herbal medicines on the levels of sdLDL, LDL particle number, and LDL particle size. Based on the results of the existing clinical trials this review suggests that natural products such as medicinal plants, nutraceuticals and omega-3 fatty acids can be used as adjunct or complementary therapeutic agents to reduce sdLDL levels, LDL particle numbers or increase LDL particle size and subsequently may prevent and treat CVD, with the advantage that these natural agents are generally safe, accessible, and inexpensive.

The antimicrobial and antiviral activity of polyphenols from almond (Prunus dulcis L.) skin.

Musarra-Pizzo, M., G. Ginestra, A. Smeriglio, R. Pennisi, M.T. Sciortino, G. Mandalari, 2020. The antimicrobial and antiviral activity of polyphenols from almond (Prunus dulcis L.) skin. Nutrients. 11, 2355; doi:10.3390/nu11102355.

Due to their antimicrobial and antiviral activity potential in vitro, polyphenols are gaining a lot of attention from the pharmaceutical and healthcare industries. A novel antiviral and antimicrobial approach could be based on the use of polyphenols obtained from natural sources. Here, we tested the antibacterial and antiviral effect of a mix of polyphenols present in natural almond skin (NS MIX). The antimicrobial potential was evaluated against the standard American Type Culture Collection (ATCC) and clinical strains of Staphylococcus aureus, including methicillin-resistant (MRSA) strains, by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Herpes simplex virus type I was used for the antiviral assessment of NS MIX by plaque assay. Furthermore, we evaluated the expression of viral cascade antigens. NS MIX exhibited antimicrobial (MIC values of 0.31–1.25 mg/ml) and antiviral activity (decrease in the viral titer ** p < 0.01, and viral DNA accumulation * p < 0.05) against Staphylococcus aureus and HSV-1, respectively. Amongst the isolated compounds, the aglycones epicatechin and catechin showed the greatest activity against S. aureus ATCC 6538P (MIC values of 0.078–0.15 and 0.15 mg/ml, respectively), but were not active against all the other strains. These results could be used to develop novel products for topical use.

Almonds (Prunus Dulcis Mill. D. A. Webb): A source of nutrients and health-promoting compounds.

Barreca, D., S.M. Nabavi, A. Sureda, M. Rasekhian, R. Raciti, A.S. Silva, G. Annunziata, A. Arnone, G.C. Tenore, İ. Süntar, G. Mandalari, 2020. Almonds (Prunus Dulcis Mill. D. A. Webb): A source of nutrients and health-promoting compounds. Nutrients. 12, 672; doi:10.3390/nu12030672.

Almonds (Prunus dulcis Miller D. A. Webb (the almond or sweet almond)), from the Rosaceae family, have long been known as a source of essential nutrients; nowadays, they are in demand as a healthy food with increasing popularity for the general population and producers. Studies on the composition and characterization of almond macro- and micronutrients have shown that the nut has many nutritious ingredients such as fatty acids, lipids, amino acids, proteins, carbohydrates, vitamins and minerals, as well as secondary metabolites. However, several factors affect the nutritional quality of almonds, including genetic and environmental factors. Therefore, investigations evaluating the effects of different factors on the quality of almonds were also included. In epidemiological studies, the consumption of almonds has been associated with several therapeutically and protective health benefits. Clinical studies have verified the modulatory effects on serum glucose, lipid and uric acid levels, the regulatory role on body weight, and protective effects against diabetes, obesity, metabolic syndrome and cardiovascular diseases. Moreover, recent researchers have also confirmed the prebiotic potential of almonds. The present review was carried out to emphasize the importance of almonds as a healthy food and source of beneficial constituents for human health, and to assess the factors affecting the quality of the almond kernel. Electronic databases including PubMed, Scopus, Web of Science and SciFinder were used to investigate previously published articles on almonds in terms of components and bioactivity potentials with a particular focus on clinical trials.

Replacing saturated fats with unsaturated fats from walnuts or vegetable oils lowers atherogenic lipoprotein classes without increasing lipoprotein(a).

Tindall, A.M., P.M. Kris-Etherton, K.S. Petersen, 2020. Replacing saturated fats with unsaturated fats from walnuts or vegetable oils lowers atherogenic lipoprotein classes without increasing lipoprotein(a). J Nutr. pii: nxz313. doi: 10.1093/jn/nxz313. [Epub ahead of print]

Bachground: Walnuts have established lipid-/lipoprotein-lowering properties; however, their effect on lipoprotein subclasses has not been investigated. Furthermore, the mechanisms by which walnuts improve lipid/lipoprotein concentrations are incompletely understood. Objectives: We aimed to examine, as exploratory outcomes of this trial, the effect of replacing SFAs with unsaturated fats from walnuts or vegetable oils on lipoprotein subclasses, cholesterol efflux, and proprotein convertase subtilisin/kexin type 9 (PCSK9). Methods: A randomized, crossover, controlled-feeding study was conducted in individuals at risk of cardiovascular disease (CVD) (n = 34; 62% men; mean ± SD age 44 ± 10 y; BMI: 30.1 ± 4.9 kg/m2). After a 2-wk run-in diet (12% SFAs, 7% PUFAs, 12% MUFAs), subjects consumed the following diets, in randomized order, for 6 wk: 1) walnut diet (WD) [57-99 g/d walnuts, 7% SFAs, 16% PUFAs [2.7% α-linolenic acid (ALA)], 9% MUFAs]; 2) walnut fatty acid-matched diet [7% SFAs, 16% PUFAs (2.6% ALA), 9% MUFAs]; and 3) oleic acid replaces ALA diet (ORAD) [7% SFAs, 14% PUFAs (0.4% ALA); 12% MUFAs] (all percentages listed are of total kilocalories ). Serum collected after the run-in (baseline) and each diet period was analyzed for lipoprotein classes and subclasses (vertical auto profile), cholesterol efflux, and PCSK9. Linear mixed models were used for data analysis. Results: Compared with the ORAD, total cholesterol (mean ± SEM -8.9± 2.3 mg/dL; -5.1%; P < 0.001), non-HDL cholesterol (-7.4 ± 2.0 mg/dL; -5.4%; P = 0.001), and LDL cholesterol (-6.9 ± 1.9 mg/dL; -6.5%; P = 0.001) were lower after the WD; no other pairwise differences existed. There were no between-diet differences for HDL-cholesterol or LDL-cholesterol subclasses. Lipoprotein(a) [Lp(a)], cholesterol efflux, and PCSK9 were unchanged after the diets. Conclusions: In individuals at risk of CVD, replacement of SFAs with unsaturated fats from walnuts or vegetable oils improved lipid/lipoprotein classes, including LDL-cholesterol, non-HDL cholesterol, and total cholesterol, without an increase in Lp(a). These improvements were not explained by changes in cholesterol efflux capacity or PCSK9.

Angiopoietin-1 protects 3T3-L1 preadipocytes from saturated fatty acid-induced cell death.

Son, Y., J.M. Cox, J.L. Stevenson, J.A. Cooper, C.M. Paton, 2020. Angiopoietin-1 protects 3T3-L1 preadipocytes from saturated fatty acid-induced cell death. Nutr Res. 76:20-28.

Cross talk between endothelial cells and adipocytes is vital to adipocyte functions, but little is known about the mechanisms or factors controlling the process. Angiogenesis is a critical component linking the endothelium to healthy adipogenesis, yet it is not known if or how it is involved in adipocyte physiology. Therefore, the purpose of this study was to determine the effect of angiopoietin-1 (Ang-1) and -2 (Ang-2) as well as their receptor, Tie-2, on adipocyte physiology. 3T3-L1 pre- and mature adipocytes were found to express Ang-1, Ang-2, and Tie-2, which decrease upon polyunsaturated fatty acid treatment. Furthermore, 3T3-L1 cells treated with recombinant Ang-1 or Ang-2 increased expression of the antiapoptotic gene Bcl-x and decreased expression of the proapoptotic gene Casp-8. Next, preadipocytes were treated with saturated fatty acids (SFAs) to induce cell stress. SFA-mediated splicing of X-box-binding protein-1 was reduced by co-treatment with Ang-1, and cell viability was improved in the presence of SFAs + Ang-1. Taken together, these results indicate that Ang-1 may protect preadipocytes from SFA-induced apoptosis and endoplasmic reticulum stress.

Effect of a 2-year diet intervention with walnuts on cognitive decline. The Walnuts and Healthy Aging (WAHA) study: a randomized controlled trial.

Sala-Vila, A., C. Valls-Pedret, S. Rajaram, N. Coll-Padrós, M. Cofán, M. Serra-Mir, A.M. Pérez-Heras, I. Roth, T.M. Freitas-Simoes, M. Doménech, C. Calvo, A. López-Illamola, E. Bitok, N.K. Buxton, L. Huey, A. Arechiga, K. Oda, G.J. Lee, D. Corella, L. Vaqué-Alcázar, R. Sala-Llonch, D. Bartrés-Faz, J. Sabaté, E. Ro, 2020. Effect of a 2-year diet intervention with walnuts on cognitive decline. The Walnuts and Healthy Aging (WAHA) study: a randomized controlled trial. Am J Clin Nutr. pii: nqz328. doi: 10.1093/ajcn/nqz328. [Epub ahead of print]

Background: Walnut consumption counteracts oxidative stress and inflammation, 2 drivers of cognitive decline. Clinical data concerning effects on cognition are lacking. Objectives: The Walnuts and Healthy Aging study is a 2-center (Barcelona, Spain; Loma Linda, CA) randomized controlled trial examining the cognitive effects of a 2-y walnut intervention in cognitively healthy elders. Methods: We randomly allocated 708 free-living elders (63-79 y, 68% women) to a diet enriched with walnuts at ∼15% energy (30-60 g/d) or a control diet (abstention from walnuts). We administered a comprehensive neurocognitive test battery at baseline and 2 y. Change in the global cognition composite was the primary outcome. We performed repeated structural and functional brain MRI in 108 Barcelona participants. Results: A total of 636 participants completed the intervention. Besides differences in nutrient intake, participants from Barcelona smoked more, were less educated, and had lower baseline neuropsychological test scores than those from Loma Linda. Walnuts were well tolerated and compliance was good. Modified intention-to-treat analyses (n = 657) uncovered no between-group differences in the global cognitive composite, with mean changes of -0.072 (95% CI: -0.100, -0.043) in the walnut diet group and -0.086 (95% CI: -0.115, -0.057) in the control diet group (P = 0.491). Post hoc analyses revealed significant differences in the Barcelona cohort, with unadjusted changes of -0.037 (95% CI: -0.077, 0.002) in the walnut group and -0.097 (95% CI: -0.137, -0.057) in controls (P = 0.040). Results of brain fMRI in a subset of Barcelona participants indicated greater functional network recruitment in a working memory task in controls. Conclusions: Walnut supplementation for 2 y had no effect on cognition in healthy elders. However, brain fMRI and post hoc analyses by site suggest that walnuts might delay cognitive decline in subgroups at higher risk. These encouraging but inconclusive results warrant further investigation, particularly targeting disadvantaged populations, in whom greatest benefit could be expected.