Archive

Changes in nut consumption and subsequent cardiovascular disease risk among US men and women: 3 large prospective cohort studies.

Liu, X., M. Guasch-Ferré, J.P. Drouin-Chartier, D.K. Tobias, S.N. Bhupathiraju, K.M. Rexrode, W.C. Willett, Q. Sun, Y. Li, 2020. Changes in nut consumption and subsequent cardiovascular disease risk among US men and women: 3 large prospective cohort studies.
J Am Heart Assoc. 9(7):e013877. doi: 10.1161/JAHA.119.013877. Epub 2020 Apr 1.

Background: we aim to evaluate the association of within-individual changes in consumption of total and specific types of nuts and the subsequent risk of incident cardiovascular disease (CVD) in US men and women. Methods and Results: We included 34 103 men from the HPFS (Health Professionals Follow-Up Study) (1986-2012), 77 815 women from the NHS (Nurses’ Health Study) (1986-2012), and 80 737 women from the NHS II (1991-2013). We assessed nut consumption every 4 years using validated food frequency questionnaires. We used multivariable Cox proportional hazards regression models to examine the association between 4-year changes in nut consumption and risk of confirmed CVD end points in the subsequent 4 years. Per 0.5 serving/day increase in total nut consumption was associated with lower risk of CVD (relative risk [RR], 0.92; 95% CI, 0.86-0.98), coronary heart disease (RR, 0.94; 95% CI, 0.89-0.99), and stroke (RR, 0.89; 95% CI, 0.83-0.95). Compared with individuals who remained nonconsumers in a 4-year interval, those who had higher consumption of total nuts (≥0.5 servings/day) had a lower risk of CVD (RR, 0.75; 95% CI, 0.67-0.84), coronary heart disease (RR, 0.80; 95% CI, 0.69-0.93), and stroke (RR, 0.68; 95% CI, 0.57-0.82) in next 4 years. Individuals who decreased nut consumption by ≥0.50 servings/day had a higher risk of developing CVD (RR, 1.14; 95% CI, 0.99-1.32), coronary heart disease (RR, 1.06; 95% CI, 0.88-1.28), and stroke (RR, 1.28; 95% CI, 1.02-1.60) when compared with those who maintained their nut consumption. Conclusions: Increasing total consumption of nuts and intake of individual types of nuts (eg, walnuts, other tree nuts, and peanuts) was associated with a subsequent lower risk of CVD. These data support the role of nut intake in the primary prevention of CVD.

Consumption of Nuts at Midlife and Healthy Aging in Women.

Freitas-Simoes, T.M., M. Wagner, C. Samieri, A. Sala-Vila, F. Grodstein, 2020. Consumption of Nuts at Midlife and Healthy Aging in Women. J Aging Res. https://doi.org/10.1155/2020/5651737.

Background: Nut consumption may reduce age-related diseases and lead to better health and well-being in aging. Many conditions of aging develop over decades, and thus earlier lifestyle factors may particularly influence later health. Methods: In 1998 and 2002, we administered food frequency questionnaires to assess nut consumption (peanuts, walnuts, and other nuts and peanut butter) in women in the Nurses’ Health Study in their 50 s/early 60 s. In 2012, those who survived beyond 65 years with no chronic diseases, no reported memory impairment, no physical disabilities, and intact mental health were considered “healthy agers.” We used multivariable logistic regression to estimate odds ratios for healthy versus usual aging, controlled for sociodemographic, behavioral, dietary, and other potential confounding factors. Results: Of 33,931 participants at midlife, 16% became “healthy agers.” After age adjustment, we observed a significant association between total nut consumption at midlife and higher odds of healthy aging, with strongest associations observed excluding peanut butter (odds ratio (OR) = 1.46, 95% confidence interval (CI) 1.32–1.62, ≥3 servings/week versus none). Findings were attenuated after further control for covariates, including overall diet quality (OR = 1.14, 95% CI 1.02–1.28, P trend = 0.05). For nut types, we found statistically significantly higher odds of healthy aging across peanuts, walnuts, and other nuts after age adjustment. After full control for confounders, only walnut consumption remained associated with healthy aging (P trend = 0.0001); for example, the OR was 1.20 (95% CI 1.00–1.44) for ≥2 servings/week versus none. Conclusions: Women consuming nuts at midlife have a greater likelihood of overall health and well-being at older ages. Nut consumption may represent a simple intervention to explore and promote healthy aging.

Colon cancer prevention with walnuts: a longitudinal study in mice from the perspective of a gut enterotype-like cluster.

Chen Y., M. Nakanishi, E.J. Bautista, V. Qendro, E. Sodergren, D.W. Rosenberg, G.M. Weinstock, 2020. Colon cancer prevention with walnuts: a longitudinal study in mice from the perspective of a gut enterotype-like cluster. Cancer Prev Res (Phila). 13(1):15-24.

There is limited understanding of how walnut consumption inhibits the development of colorectal cancer. A possible mechanism may involve alterations to the gut microbiota. In this study, the effects of walnut on gut microbiota were tested in a mouse tumor bioassay using the colonotropic carcinogen, azoxymethane (AOM) added to the total Western diet (TWD). 16S rRNA pyrosequencing identified three enterotype-like clusters (E1, E2, and E3) in this murine model. E1, E2, and E3 are associated with AOM exposure, walnut consumption, and TWD diet, respectively. E2 and E3 showed distinct taxonomic and functional characteristics, while E1 represented an intermediate state. At the family level, E1 and E3 were both enriched with Bacteroidaceae, but driven by two different operational taxonomic units (OTU; OTU-2 for E1, OTU-4 for E3). E2 was overrepresented with Porphyromonadaceae and Lachnospiraceae, with OTU-3 (family Porphyromonadaceae) as the “driver” OTU for this cluster. Functionally, E3 is overrepresented with genes of glycan biosynthesis and metabolism, xenobiotic metabolism, and lipid metabolism. E2 is enriched with genes associated with cell motility, replication and repair, and amino acid metabolism. Longitudinally, E2 represents the gut microbial status of early life in these mice. In comparison with E1 and E3, E2 is associated with a moderate lower tumor burden (P = 0.12). Our results suggest that walnuts may reduce the risk of colorectal cancer within a Western diet by altering the gut microbiota. Our findings provide further evidence that colorectal cancer risk is potentially modifiable by diet via alterations to the microbiota.

Walnut-associated fatty acids inhibit LPS-induced activation of BV-2 microglia.

Carey, A.N., D.R. Fisher, D.F. Bielinski, D.S. Cahoon, B. Shukitt-Hale, 2020. Walnut-associated fatty acids inhibit LPS-induced activation of BV-2 microglia. Inflammation. 43(1):241-250.

Walnuts have high levels of the omega-3 fatty acid alpha-linolenic acid (C18:3n-3, ALA) and the omega-6 fatty acid linoleic acid (C18:2n-6, LA). Previous research has demonstrated that pre-treatment of BV-2 microglia with walnut extract inhibited lipopolysaccharide (LPS)-induced activation of microglia. As an extension of that study, the effects of walnut-associated fatty acids on BV-2 microglia were assessed. BV-2 murine microglia cells were treated with LA, ALA, or a combination of LA+ALA prior to or after exposure to LPS. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) were measured in cell-conditioned media. Cyclooxeganse-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression were assessed in BV-2 microglia. Both LA and ALA protected against LPS-induced increases in NO, iNOS, COX-2, and TNF-alpha when used before LPS exposure. When BV-2 microglia were treated with fatty acids after LPS, only COX-2 and TNF-alpha were significantly attenuated by the fatty acids. There was no synergism of LA+ALA, as the LA+ALA combination was no more effective than LA or ALA alone. Fatty acids, like those found in walnuts, may protect against production of cytotoxic intermediates and cell-signaling molecules from microglia and may prove beneficial for preventing age- or disease-related neurodegeneration.

Effects of supplementing the usual diet with a daily dose of walnuts for two years on metabolic syndrome and its components in an elderly cohort.

Al Abdrabalnabi, A., S. Rajaram, E. Bitok, K. Oda, W.L. Beeson, A. Kaur, M. Cofán, M. Serra-Mir, I. Roth, E. Ros, J. Sabaté, 2020. Effects of supplementing the usual diet with a daily dose of walnuts for two years on metabolic syndrome and its components in an elderly cohort. Nutrients. 11;12(2). pii: E451. doi: 10.3390/nu12020451.

Accumulating evidence links nut consumption with an improved risk of metabolic syndrome (MetS); however, long-term trials are lacking. We examined the effects of a daily dose of walnuts for two years on MetS in a large elderly cohort. A total of 698 healthy elderly participants were randomly assigned to either a walnut supplemented or a control diet. The participants in the walnut group were provided with packaged walnuts (1, 1.5, or 2 oz. or ~15% of energy) and asked to incorporate them into their daily habitual diet. The participants in the control group were asked to continue with their habitual diet and abstain from eating walnuts and other tree nuts. Intake of n-3 fatty acid supplements was not permitted in either group. Fasting blood chemistries, blood pressure, and anthropometric measurements were obtained at baseline and at the end of intervention. A total of 625 participants (67% women, mean age 69.1 y) completed this two-year study (90% retention rate). Triglycerides decreased in both walnut (-.94 mg/dl) and control (-0.96 mg/dl) groups, with no significant between-group differences. There was a non-significant decrease in systolic and diastolic blood pressure in the walnut group (-1.30 and -0.71 mm Hg, respectively) and no change in the control group. Fasting blood glucose decreased by ~1 point in both the walnut and control groups. There were no significant between-group differences in the development or reversion of MetS. In conclusion, supplementing the diet of older adults with a daily dose of walnuts had no effect on MetS status or any of its components, although the walnut group tended to have lower blood pressure.

Effect of almond supplementation on non-esterified fatty acid values and exercise performance.

Esquius, L., R. Segura, G.R. Oviedo, M. Massip-Salcedo, C. Javierre, 2020. Effect of almond supplementation on non-esterified fatty acid values and exercise performance. Nutrients. 12, 635; doi:10.3390/nu12030635

Several studies have investigated the effects of fat intake before exercise on subsequent substrate oxidation and exercise performance. While some studies have reported that unsaturated fatty acid supplementation slightly increases fat oxidation, the changes have not been reflected in the maximum oxygen uptake or in other performance and physiological parameters. We selected almonds as a fatty acid (FA) source for acute supplementation and investigated their effect on non-esterified fatty acid (NEFA) values and exercise performance. Five physically active male subjects (age 32.9 ± 12.7 years, height 178.5 ± 3.3 cm, and weight 81.3 ± 9.7 kg) were randomly assigned to take an almond or placebo supplement 2 h before participating in two cycling resistance training sessions separated by an interval of 7–10 days. Their performance was evaluated with a maximal incremental test until exhaustion. Blood samples collected before, during, and after testing were biochemically analysed. The results indicated a NEFA value average increase of 0.09 mg·dL−1 (95% CI: 0.05–0.14; p < 0.001) after active supplement intake and enhanced performance (5389 ± 1795 W vs. placebo 4470 ± 2053 W, p = 0.043) after almond supplementation compared to the placebo. The almond supplementation did not cause gastrointestinal disturbances. Our study suggests that acute almond supplementation 2 h before exercise can improve performance in endurance exercise in trained subjects.

In vitro anti-HSV-1 activity of polyphenol-rich extracts and pure polyphenol compounds derived from pistachios kernels (Pistacia vera L.).

Musarra-Pizzo, M., R. Pennisi, I. Ben-Amor, A. Smeriglio, G. Mandalari, M.T. Sciortino, 2020. In vitro anti-HSV-1 activity of polyphenol-rich extracts and pure polyphenol compounds derived from pistachios kernels (Pistacia vera L.). Plants. 9, 267; doi:10.3390/plants9020267.

Natural compounds are a prominent source of novel antiviral drugs. Several reports have previously shown the antimicrobial activity of pistachio polyphenol extracts. Therefore, the aim of our research was to investigate the activity of polyphenol-rich extracts of natural shelled (NPRE) pistachios kernels (Pistacia vera L.) on herpes simplex virus type 1 (HSV-1) replication. The Vero cell line was used to assess the cytotoxicity and antiviral activity. The cell viability was calculated by detection of cellular ATP after treatment with various concentrations of NPRE. For antiviral studies, five nontoxic-concentrations (0.1, 0.2, 0.4, 0.6, 0.8 mg/mL) were tested. Our study demonstrated that treatment with NPRE (0.4, 0.6, 0.8 mg/mL) reduced the expression of the viral proteins ICP8 (infected cell polypeptide 8), UL42 (unique long UL42 DNA polymerase processivity factor), and US11 (unique short US11 protein), and resulted in a decrease of viral DNA synthesis. The 50% cytotoxic concentration (CC50), 50% inhibitory concentration (EC50), and the selectivity index (SI) values for NPRE were 1.2 mg/mL, 0.4mg/mL, and 3, respectively. Furthermore, we assessed the anti-herpetic effect of a mix of pure polyphenol compounds (NS MIX) present in NPRE. In conclusion, our findings indicate that natural shelled pistachio kernels have remarkable inhibitory activity against HSV-1.

Understanding the fate of almond (Prunus dulcis (Mill.) D.A. Webb) oleosomes during simulated digestion.

Trombetta, D., A. Smeriglio, M. Denaro, R. Zagami, M. Tomassetti, R. Pilolli, E. De Angelis, L. Monaci, G. Mandalari, 2020. Understanding the fate of almond (Prunus dulcis (Mill.) D.A. Webb) oleosomes during simulated digestion. Nutrients. 12, 3397; doi:10.3390/nu12113397.

Background: Almond kernels contain phytochemicals with positive health effects in relation to heart disease, diabetes and obesity. Several studies have previously highlighted that almond cell wall encapsulation during digestion and particle size are factors associated with these benefits. In the present study, we have characterized almond oleosomes, natural oil droplets abundant in plants, and we have investigated their integrity during simulated gastrointestinal digestion. Methods: Oleosomes were visualized on the almond seed surface by imaging mass spectrometry analysis, and then characterized in terms of droplet size distribution by dynamic light scattering and protein profile by liquid chromatography high-resolution tandem mass spectrometry analysis. Results: The almond oleosomes’ distribution remained monomodal after in vitro mastication, whereas gastric and duodenal digestion led to a bimodal distribution, albeit characterized mainly by a prevalent population with a droplet size decrease related to a rearrangement of the protein profile. Oleosins, structural proteins found in plant oil bodies, persisted unchanged during simulated mastication, with the appearance of new prunin isoforms after gastric and duodenal digestion. Conclusions: The rearrangement of the protein profile could limit lipid bioaccessibility. The data improve our understanding of the behavior of almond lipids during gastrointestinal digestion, and may have implications for energy intake and satiety imparted by almonds.

Chemical composition and oxidative stability of eleven pecan cultivars produced in southern Brazil.

Ribeiro, S.R., B. Klein, Q.M. Ribeiro, I.D. Dos Santos, A.L. Gomes Genro, D. de Freitas Ferreira, J.J. Hamann, J.S. Barin, A.J. Cichoski, D. Fronza, V. Both, R. Wagner, 2020. Chemical composition and oxidative stability of eleven pecan cultivars produced in southern Brazil. Food Res Int. 136:109596.  doi: 10.1016/j.foodres.2020.109596. 

Nuts are considered highly nutritious foods and a source of health-promoting compounds. Therefore, the aim of this study was to evaluate the chemical composition (proximate composition, fatty acids, volatile compounds, total phenolics, squalene, and β-sitosterol) of eleven pecan cultivars harvested in Rio Grande do Sul State (Brazil) and investigate their oxidative stability by the Rancimat method. ‘Barton’ is the main cultivar produced in Brazil and presented the highest protein, linoleic acid, and linolenic acid values and the lowest saturated fatty acid values, which provide health benefits. ‘Mahan’ showed the highest oxidation induction time, both in extracted oil and ground samples, low abundance of lipid oxidation compounds, low polyunsaturated fatty acids, high levels of oleic acid and β-sitosterol, which suggests potential for storage. ‘Stuart’ and ‘Success’ had the highest total dietary fiber values. Moreover, analysis showed that ‘Chickasaw’ and ‘Success’ had large quantities of compounds correlated to lipid oxidation, suggesting low stability for long-term storage. These results imply that the physicochemical characteristics and proximate composition of pecan nut cultivars from southern Brazil have variable parameters that may depend on their genetic variability.

A comparison of fatty acid and sensory profiles of raw and roasted pecan cultivars.

Murley, T., B. Kelly, J. Adhikari, W. Reid, K. Koppel, 2020. A comparison of fatty acid and sensory profiles of raw and roasted pecan cultivars. J Food Sci. 85(9):2665-2672.

Five fatty acids comprise the bulk of the lipid content in pecans: palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid. Understanding the profiles of these fatty acids and how they relate to sensory characteristics may offer an explanation for flavor and flavor defects that may exist in certain cultivars of pecans. The objective of this study was to examine and compare fatty acid profiles of three cultivars of pecans (Major, Lakota, and Chetopa), over two crop years, under raw and roasted preparation methods, and understand the fatty acids association with sensory attributes. Percentages of palmitic, stearic, oleic, linoleic, and linolenic acids to total fatty acid content were determined using gas chromatography, and sensory profiles were generated using descriptive sensory analysis. Similar trends were seen across samples, with oleic acid comprising the majority of the total fatty acids and linolenic acid comprising the smallest percentage. There were significant differences in fatty acid content among cultivars and between pecans in the first and second crop year. Few associations were found between the fatty acids and sensory attributes, which suggest that combinations of the fatty acids contribute to certain pleasant or undesirable flavor attributes in the pecans. Subtle differences in fatty acid composition may lead to variation in flavor and flavor intensity or draw attention to or from certain attributes during consumption. Differences in crop year indicated that fatty acid content and therefore flavor are variable year to year. PRACTICAL APPLICATION: This study will help understand how fatty acid content of pecans varies from year to year. This should be taken into account when manufacturing products with pecans as the nutritional content of the product may change as the result.