Archive

Daily cashew and Brazil nut consumption modifies intestinal health in overweight women on energy-restricted intervention: A randomized controlled trial (Brazilian Nuts Study).

Souza Silveira, B.K., D.M.U. Prado Rocha, H.S.D. Martino, M. Grancieri, M.J. Contin Gomes, H.C. Mantovani, J. Bressan, H.H.M. Hermsdorff, 2024. Daily cashew and Brazil nut consumption modifies intestinal health in overweight women on energy-restricted intervention: A randomized controlled trial (Brazilian Nuts Study). J Nutr. 154(3):962-977. https://doi.org/10.1016/j.tjnut.2023.12.022

Background: Increased intestinal permeability and dysbiosis are related to obesity. Nuts can provide nutrients and bioactive compounds that modulate gut microbiota and inflammation, enhancing the beneficial effects of weight loss. Objectives: To evaluate the effect of consuming cashew nuts (Anacardium occidentale L.) and Brazil nuts (Bertholletia excelsa H.B.K) on intestinal permeability and microbiota, fecal SCFAs and pH, inflammation, and weight loss in energy restriction condition. Methods: In this 8-week randomized controlled trial, 40 women with overweight or obesity were assigned to energy-restricted groups (-500 kcal/d): control group (free of nuts) or Brazilian nuts group (BN: 30 g of cashew nuts and 15 g of Brazil nuts per day). Permeability was analyzed by the lactulose/mannitol test and the microbiota by sequencing the 16S gene in the V3-V4 regions. Plasma concentrations of inflammatory cytokines (TNF, IL-6, IL-10, IL-8, IL-17A) and C-reactive protein were analyzed. Results: In total, 25 women completed the intervention. Both groups lost weight without statistical differences. Lactulose excretion increased only in the control group (P < 0.05). The BN consumption increased fecal propionic acid and potentially beneficial bacteria, such as Ruminococcus, Roseburia, strains NK4A214 and UCG-002 from the Ruminococcaceae family, but also Lachnospiraceae family, Bacteroides, and Lachnoclostridium, when compared to the control group. Changes in intestinal permeability were correlated to a greater reduction in body fat (kg), and IL-8, and increases in Ruminococcus abundance. Conclusion: Our findings demonstrate a positive impact of BN consumption within an energy-restricted context, linked to the augmentation of potentially beneficial bacteria and pathways associated with body fat reduction. Besides, BN consumption mitigated increased intestinal permeability, although its capacity to diminish permeability or enhance weight loss proved limited. This trial was registered at the Brazilian Registry of Clinical Trials as ReBEC (ID: RBR-3ntxrm).

Upcycling commercial nut byproducts for food, nutraceutical, and pharmaceutical applications: A comprehensive review.

Alasalvar, C., G. Huang, B.W. Bolling, P.A. Jantip, R.B. Pegg, X.K. Wong, S.K. Chang, E. Pelvan, A.C. de Camargo, G. Mandalari, A. Hossain, F. Shahidi, 2025. Upcycling commercial nut byproducts for food, nutraceutical, and pharmaceutical applications: A comprehensive review. Food Chem. 467:142222. https://doi.org/10.1016/j.foodchem.2024.142222

This article presents a comprehensive overview of upcycling commercial nut byproducts (such as almond, Brazil nut, cashew, hazelnut, macadamia, peanut (also known as a legume), pecan, pine nut, pistachio, and walnut) for food, nutraceutical, and pharmaceutical applications. Upcycling nut byproducts, namely husk/hull, hard shell, brown skin, defatted flour/meal/cake, pine cone, cashew nut shell liquid, cashew apple, walnut septum, and dreg/okara, has great potential, not only to reduce/minimise waste, but also to fit within the circular economy concept. Each byproduct has its own unique functional properties, which can bring significant value. These byproducts can be used as value-added ingredients to promote better health and well-being, due to their rich sources of diverse bioactive components/phytochemicals, polysaccharides, fibre, lignin, prebiotics, oils, proteins, bioactive peptides, minerals, and vitamins, among other components. This comprehensive review provides a basis for future research and development of product applications for nut byproducts. More studies are needed on novel product development to valorise nut byproducts.

Consumption of tree nuts as snacks stimulates changes in plasma fatty acid profiles and adipose tissue gene expression in young adults at risk for metabolic syndrome

Widmer, A., K. Lillegard, K. Wood, M. Robles, R. Fan, F. Ye, J.R. Koethe, H.J. Silver, 2025. Consumption of tree nuts as snacks stimulates changes in plasma fatty acid profiles and adipose tissue gene expression in young adults at risk for metabolic syndrome. Clinical Nutrition. (48)25 – 34. https://doi.org/10.1016/j.clnu.2025.03.002.

Background and aims: The prevalence of metabolic syndrome has been increasing in young adults, concomitant with the occurrence of increased abdominal adiposity. We previously reported that consuming tree nuts, as replacement for typical high-carbohydrate snacks, reduces visceral fat and waist circumference in young adults who have one or more metabolic syndrome risk factors. We aimed to investigate the effects of tree nuts snack consumption on plasma and adipose tissue fatty acid profiles along with changes in the expression of adipose tissue genes involved in thermogenesis, glycemia, adipocyte signaling, lipolysis, and immunity. Methods: A randomized parallel-arm 16-week intervention trial was conducted in 84 adults aged 22-36 years. Participants in both groups were provided with caloric goals for weight maintenance, daily menus, and pre-portioned snacks at every other week visits with study registered dietitians. Changes in dietary fatty acid intakes, plasma and abdominal subcutaneous adipose tissue (SAT) triglycerides fatty acid profiles using gas-liquid chromatography, and the expression of 241 genes in abdominal SAT were evaluated. Results: Consuming tree nuts snacks increased mono- and polyunsaturated fatty acid intakes yielding a 9-fold greater dietary unsaturated to saturated fat ratio. The tree nuts snack group also had significantly greater improvements in plasma 16:1/16:0 ratio; plasma phospholipids oleic and gamma linolenic acid content; plasma diglycerides, triglycerides, and cholesterol esters oleic acid content; and total plasma monounsaturated fatty acids. While abdominal SAT only showed trends for increased oleic acid content and unsaturated to saturated fat ratio, the tree nuts snacks participants had altered expression of 13 genes in abdominal SAT that have roles in nutrient sensing, energy homeostasis, and vulnerability to obesity. Conclusions: Replacing typical high-carbohydrate snacks with tree nuts results in more favorable dietary, plasma, and adipose tissue fatty acid profiles that could aid in preventing the development of excess adiposity and cardiometabolic disease states including metabolic syndrome.

Metabolisable energy from nuts and patterns of nut consumption in the Australian population: a secondary analysis of the 2011–12 National Nutrition and Physical Activity Survey.

Nikodijevic, C.J., Y.C. Probst, S.-Y. Tan, E.P. Neale, 2024. Metabolisable energy from nuts and patterns of nut consumption in the Australian population: a secondary analysis of the 2011–12 National Nutrition and Physical Activity Survey. J Hum Nutr Diet. 37: 538–549. https://doi.org/10.1111/jhn.13278

Background: Nut intake is not associated with increased body weight, which may be explained by their metabolisable energy, among other factors. Therefore, total energy intake may be overestimated among nut consumers. This study aimed to describe the metabolisable energy from nuts and nut consumption patterns in the Australian population. Methods: A nut‐specific database was expanded to include metabolizable energy of nuts (based on nut type and form) and applied to the 2011–12 National Nutrition and Physical Activity Survey (NNPAS). Participants were Australians aged 2 years and older from the 2011–12 NNPAS (n = 12,153, with n = 4,765 nut consumers). Mean metabolisable energy intake was compared with mean energy intake using Atwater factors in nut consumers. Additionally, nut consumption patterns were explored, including the proportion of nuts consumed at meals and snacks. Results: Among nut consumers, mean metabolisable energy from nuts based only on nut type was 241.2 (95% confidence interval [CI]: 232.0, 250.5) kJ/day and mean metabolisable energy considering both nut type and form was 260.7(95% CI: 250.2, 271.2) kJ/day. Energy intake from nuts using Atwater factors was 317.6 (95% CI: 304.8, 330.3) kJ/day. Nuts were more likely to be consumed at snack occasions, with approximately 63% of nut intake occurring as a snack. Conclusion: Application of metabolisable energy to the 2011–12 NNPAS has a significant impact on calculation of energy intake from nuts. Nut consumption patterns identified a majority of nut consumption occurring as snacks. These findings may inform strategies to support nut consumption in Australia.