King, J.C., J. Blumberg, L. Ingwersen, M. Jenab, K.L. Tucker, 2008. Tree nuts and peanuts as components of a healthy diet. J. Nutr. 138: 1736S-1740S.
Nuts have been part of the diet for thousands of years. In 2003, a Qualified Health Claim was approved, stating that eating 1.5 oz (42 g) of nuts per day may reduce the risk of heart disease. Usual intakes fall short of this recommendation. About one-third of Americans report consuming nuts (tree nuts or peanuts) on any one day. Seven percent of Europeans report eating nuts, but the amount eaten by European nut consumers (31 g/d) is larger than that of Americans (21 g/d). Nuts are an excellent source of vitamin E and magnesium. Individuals consuming nuts also have higher intakes of folate, β-carotene, vitamin K, lutein+zeaxanthin, phosphorus, copper, selenium, potassium, and zinc per 1000 kcal. Regular nut consumption increases total energy intake by 250 kcal/d (1.05 MJ/d), but the body weight of nut consumers is not greater than that of nonconsumers. Nuts are an excellent source of phytochemicals (phytosterols, phenolic acids, flavonoids, stilbenes, and carotenoids). The total phenolic constituents probably contribute to the total antioxidant capacity of nuts, which is comparable to broccoli and tomatoes. To improve guidance on the use of nuts in the diet, the position of nuts in typical food patterns needs to be addressed. The 2005 MyPyramid includes nuts in the meat and beans group. Yet, nuts are rarely consumed as meat substitutes. Because 60% of the nuts consumed in the U.S. are eaten as snacks, emphasizing their use as a healthy snack may be more effective than inclusion within a food group.
Davis, P.A., M. Jenab, J.P. Vanden Heuvel, T. Furlong, S. Taylor, 2008. Tree nut and peanut consumption in relation to chronic and metabolic diseases including allergy. J. Nutr. 138: 1757S-1762S.
The New and Emerging Research session highlighted the emerging understanding of both the positive and negative effects of nuts consumption on health. The limited nature of both experimental and epidemiological evidence for positive relationship(s) between nut intake and health were noted. Study inconsistency and limitations, particularly survey methodology, were explored. Recent results from epidemiologic studies indicating a potential negative association between nut and seed intake and cancer risk were reviewed. The ability of walnuts to reduce endothelin suggests an interesting biochemical mechanism of nut action that may affect other endothelin-associated diseases, which should be further explored. The effects of nuts and their constituents on a nuclear receptor screen (PPAR, β/, , LXR, β, RXR, β, , PXR, and FXR) have been explored. Nut allergenicity and approaches necessary to minimize this effect were also described. In contrast to the positive effects, nut allergies present tree nut-allergic consumers with health challenges. The Food Allergy and Anaphylaxis Network stressed the importance of ensuring that consumers with food allergies have legible, accurate food labels. The Food Allergen Labeling and Consumer Protection Act has engendered precautionary, worst-case allergen scenario labeling statements with unknown benefits to consumer health. Issues of cross-contamination due to shared equipment and shared facilities highlighted the need to rely on allergen control programs that use ELISA technology and have increased understanding of nut allergens. Ultimately, to maximize the positive benefits of nuts, the consumer must be provided with all the information required to make an informed choice.
Aranceta, J., C.P. Rodrigo, A. Naska, V.R. Vadillo, A. Trichopoulou, 2006. Nut consumption in Spain and other countries. British Journal of Nutrition. 96, Suppl. 2, S3-S11
In countries of the Mediterranean region, nuts have been consumed in moderate quantities since ancient times. Epidemiological studies show lower risk of cardiovascular diseases in populations with frequent nut consumption, independent from other dietary components. This article assesses nut consumption in Spain and other countries using different sources of data collected at the country, household or individual levels. The per capita consumption of nuts in Spain in 2001 was 7.9 g/person/d. The varieties most widely consumed are walnuts, almonds, hazelnuts and peanuts. Results of the eVe study estimate an average nut consumption in the Spanish population aged 25-60 years of 3.3 g/person/d. No significant statistical differences were observed between men and women. Consumption is higher in men aged between 35 and 44 years (4.5 g/d) and in women aged between 45 and 54 years (3.5 g/d). In the population of 2-24 years, according to the enKid study, nut consumption is estimated at 4.9±18.5 g/person per d. The age group with the highest consumption is teenagers between 14 and 17 years. The northeastern, northern and eastern regions of Spain show the highest consumption. According to FAO balance sheets, in 2001, Lebanon (16.5 kg/person per year) and Greece (11.9 kg/person per year) were the countries in the Mediterranean region with the highest consumption of nuts, followed by Spain (7.3 kg/person per year), Israel and Italy.
Salas-Salvado’, J., J. Ferna’ ndez-Ballart, E. Ros, M-A. Martı’nez-Gonza’ lez, M. Fito’, R. Estruch, D. Corella, M. Fiol, E. Go’mez-Gracia, F. Aro’s, G. Flores, J. Lapetra, R. Lamuela-Ravento’s, V. Ruiz-Gutie’rrez, M. Bullo’, J. Basora, M-I. Covas for the PREDIMED Study Investigators, 2008. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status one-year results of the PREDIMED randomized trial. Arch Intern Med. 168(22):2449-2458.
Background: Epidemiological studies suggest that the Mediterranean diet (MedDiet) may reduce the risk of developing the metabolic syndrome (MetS). We compared the 1-year effect of 2 behavioral interventions to implement the MedDiet vs advice on a low-fat diet on MetS status. Methods: A total of 1224 participants were recruited from the PREDIMED (Prevencio’n con Dieta Mediterra’nea) Study, a multicenter, 3-arm, randomized clinical trial to determine the efficacy of the MedDiet on the primary prevention of cardiovascular disease. Participants were older subjects at high risk for cardiovascular disease. Interventions were quarterly education about the MedDiet plus provision of either 1 L/wk of virgin olive oil (MedDiet + VOO) or 30 g/d of mixed nuts (MedDiet + nuts), and advice on a low-fat diet (control diet). All diets were ad libitum, and there was no increase in physical activity for any of the interventions. Lifestyle variables and MetS features as defined by the National Cholesterol Education Program Adult Treatment Panel III criteria were assessed. Results: At baseline, 61.4% of participants met criteria for the MetS. One-year prevalence was reduced by 6.7%, 13.7%, and 2.0% in the MedDiet + VOO, MedDiet + nuts, and control diet groups, respectively (MedDiet + nuts vs control groups, P=.01; MedDiet + VOO vs control group, P =.18). Incident rates of the MetS were not significantly different among groups (22.9%, 17.9%, and 23.4%, respectively). After adjustment for sex, age, baseline obesity status, and weight changes, the odds ratios for reversion of MetS were 1.3 (95% confidence interval, 0.8-2.1) for the MedDiet + VOO group and 1.7 (1.1-2.6) for the MedDiet + nuts group compared with the control diet group. Conclusion: A traditional MedDiet enriched with nuts could be a useful tool in the management of the MetS.
Jenkins, D.J.A., F.B. Hu, L.C. Tapsell, A.R. Josse, C.W.C. Kendall, 2008. Possible Benefit of Nuts in Type 2 Diabetes. J. Nutr. 138: 1752S-1756S.
Nuts, including peanuts, are now recognized as having the potential to improve the blood lipid profile and, in cohort studies, nut consumption has been associated with a reduced risk of coronary heart disease (CHD). More recently, interest has grown in the potential value of including nuts in the diets of individuals with diabetes. Data from the Nurses Health Study indicates that frequent nut consumption is associated with a reduced risk of developing diabetes and cardiovascular disease. Randomized controlled trials of patients with type 2 diabetes have confirmed the beneficial effects of nuts on blood lipids also seen in nondiabetic subjects, but the trials have not reported improvement in A1c or other glycated proteins. Acute feeding studies, however, have demonstrated the ability of nuts, when eaten with carbohydrate (bread), to depress postprandial glycemia. Furthermore, there was evidence of reduced postprandial oxidative stress associated with nut consumption. In terms of dietary composition, nuts have a good nutritional profile, are high in monounsaturated fatty acids (MUFA) and PUFA, and are good sources of vegetable protein. Incorporation of nuts in the diet may therefore improve the overall nutritional quality of the diet. We conclude that there is justification to consider the inclusion of nuts in the diets of individuals with diabetes in view of their potential to reduce CHD risk, even though their ability to influence overall glycemic control remains to be established.
Kris-Etherton, P.M., F.B. Hu, E. Ros, J. Sabaté, 2008. The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr. 138, 1746S-1751.
Epidemiologic and clinical trial evidence has demonstrated consistent benefits of nut and peanut consumption on coronary heart disease (CHD) risk and associated risk factors. The epidemiologic studies have reported various endpoints, including fatal CHD, total CHD death, total CHD, and nonfatal myocardial infarct. A pooled analysis of 4 U.S. epidemiologic studies showed that subjects in the highest intake group for nut consumption had a 35% reduced risk of CHD incidence. The reduction in total CHD death was due primarily to a decrease in sudden cardiac death. Clinical studies have evaluated the effects of many different nuts and peanuts on lipids, lipoproteins, and various CHD risk factors, including oxidation, inflammation, and vascular reactivity. Evidence from these studies consistently shows a beneficial effect on these CHD risk factors. The LDL cholesterol-lowering response of nut and peanut studies is greater than expected on the basis of blood cholesterol-lowering equations that are derived from changes in the fatty acid profile of the diet. Thus, in addition to a favorable fatty acid profile, nuts and peanuts contain other bioactive compounds that explain their multiple cardiovascular benefits. Other macronutrients include plant protein and fiber; micronutrients including potassium, calcium, magnesium, and tocopherols; and phytochemicals such as phytosterols, phenolic compounds, resveratrol, and arginine. Nuts and peanuts are food sources that are a composite of numerous cardioprotective nutrients and if routinely incorporated in a healthy diet, population risk of CHD would therefore be expected to decrease markedly.
Djoussé, L., T. Rudich, J.M. Gaziano, 2008. Nut consumption and risk of heart failure in the Physicians’ Health Study I. Am J Clin Nutr. 88:930 -3.
Background: Heart failure is highly prevalent among older adults and is associated with high cost and societal burden. Although previous studies have reported beneficial effects of dietary factors on heart failure predictors, no previous study has examined whether frequent consumption of nuts is associated with a lower risk of heart failure in a large prospective cohort. Objective: We examined the association between nut consumption and incident heart failure to determine whether such a relation is modified by overweight or obesity. Design: This was a prospective cohort study of 20 976 participants from the Physicians’ Health Study I. Nut consumption was assessed with a simple abbreviated food questionnaire, and self-reported heart failure was ascertained by follow-up questionnaires. We used Cox regression to estimate relative risks of heart failure. Results: After an average follow-up of 19.6 y, 1093 new cases of heart failure occurred. Nut consumption was not associated with the risk of developing heart failure in this cohort: multivariable adjusted hazard ratios were 1.0 (reference), 0.98 (95% CI: 0.83, 1.15), 1.06 (95% CI: 0.89, 1.27), and 1.01 (95% CI: 0.84, 1.22) for nut consumption of <1, 1, and ≥2 servings/wk, respectively (P for linear trend: 0.64). The lack of a meaningful relation between nut intake and incident heart failure was seen in both lean and overweight or obese participants (P for interaction: 0.96). Conclusion: Our data do not provide evidence for an association between nut consumption and incident heart failure in US male physicians. However, our data cannot rule out possible benefits of nut consumption on subtypes of heart failure not prevalent in this cohort.
Shahidi, F., C. Alasalvar, C.M. Liyana-Pathirana, 2007. Antioxidant phytochemicals in hazelnut kernel (Corylus Avellana l.) and hazelnut byproducts. J. Agric. Food Chem. 55(4):1212–1220.
Antioxidant efficacies of ethanol extracts of defatted raw hazelnut kernel and hazelnut byproducts (skin, hard shell, green leafy cover, and tree leaf) were evaluated by monitoring total antioxidant activity (TAA) and free-radical scavenging activity tests [hydrogen peroxide, superoxide radical, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical], together with antioxidant activity in a β-carotene−linoleate model system, inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol, and inhibition of strand breaking of supercoiled deoxyribonucleic acid (DNA). In addition, yield, content of phenolics, and phenolic acid profiles (free and esterified fractions) were also examined. Generally, extracts of hazelnut byproducts (skin, hard shell, green leafy cover, and tree leaf) exhibited stronger activities than hazelnut kernel at all concentrations tested. Hazelnut extracts examined showed different antioxidative efficacies, expected to be related to the presence of phenolic compounds. Among samples, extracts of hazelnut skin, in general, showed superior antioxidative efficacy and higher phenolic content as compared to other extracts. Five phenolic acids (gallic acid, caffeic acid,p-coumaric acid, ferulic acid, and sinapic acid) were tentatively identified and quantified (both free and esterified forms). Extracts contained different levels of phenolic acids. These results suggest that hazelnut byproducts could potentially be considered as an excellent and readily available source of natural antioxidants.
Fleischer, D.M., 2007. The natural history of peanut and tree nut allergy. Current Allergy and Asthma Reports. 7:175–181.
Peanut and tree nut allergies were once thought to be permanent. Recent studies have shown that about 20% and 10%, respectively, of young patients may outgrow peanut and tree nut allergies. For the majority of patients, however, the natural history is not favorable. In addition, approximately 8% of patients who outgrow peanut allergy may suffer a recurrence. The rising prevalence of these allergies, coupled with the knowledge that allergic reactions to these foods have the potential to be severe or fatal and that accidental exposures are common, makes developing effective treatments to alter the natural history of peanut and tree nut allergies even more crucial for those who will not outgrow them. At this time, avoidance of the offending foods and being prepared to treat a potential reaction after accidental ingestion is the only treatment, but many promising therapeutic interventions are being investigated.
Ritter, M.M.C., G.P. Savage, 2007. Soluble and insoluble oxalate content of nuts. Journal of Food Composition and Analysis. 20:169-174.
This study was conducted to determine the oxalate contents in common nuts either locally grown or imported into New Zealand. Samples of imported nuts were purchased from supermarkets in Christchurch while locally grown nuts were obtained directly from the growers. In this experiment gastric soluble and intestinal soluble oxalates were extracted from the nuts using an in vitro assay, which involved incubations of the food samples for 2 h at 37 1C in gastric and intestinal juice. The extracted oxalates were then determined by HPLC chromatography. Roasted pistachio nuts and chestnuts contained very low levels (<85 mg/100 g fresh weight (FW)) of gastric soluble oxalate. Peanuts, Spanish peanuts, peanut butter, ginkgo, cashew nuts and pecan nuts all contained relatively low levels of gastric soluble oxalate (147–250 mg gastric soluble oxalate/100 g FW). Almonds, Brazil, pine and candle nuts contained high levels of gastric soluble oxalate (492.0–556.8 mg/100 g FW). The intestinal soluble oxalate is the fraction that will be absorbed in the small intestine. Peanuts, Spanish peanuts, peanut butter, ginkgo and pecan nuts all contained relatively low levels of intestinal soluble oxalate (129–173 mg intestinal soluble oxalate/100 g FW). Almonds, Brazil, cashew and candle nuts contained higher levels of intestinal soluble oxalate (216–305 mg/100 g FW). Pine nuts contained the highest levels of intestinal soluble oxalate (581 mg/100 g FW), while chestnuts and roasted pistachio nuts were low (72 and 77 mg /100 g FW). Overall the mean soluble oxalate content of nuts was 78% of the gastric soluble oxalate content (41–100%). The results obtained in this study confirm that the intestinal soluble oxalate contents of nuts range widely and people who have a tendency to form kidney stones would be wise to moderate their consumption of certain nuts.