Archive

Effect of nut consumption on vascular endothelial function: A systematic review and meta-analysis of randomized controlled trials.

Xiao, Y., W. Huang, C. Peng, J. Zhang, C. Wong, J.H. Kim, E.-K. Yeoh, 2017. Effect of nut consumption on vascular endothelial function: A systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition. http://dx.doi.org/10.1016/j.clnu.2017.04.011

Objective: Nut consumption has consistently been found to be associated with a reduced risk of cardiovascular diseases (CVD) and mortality in prospective studies. However, its effect on endothelial function, a prognostic marker of CVD, is still controversial in clinical trials. This meta-analysis of randomized controlled trials (RCTs) aimed to quantitatively assess the effect of nuts on vascular endothelial function. Methods: Major electronic databases were searched for published RCTs that reported the effect of nuts on flow mediated dilation (FMD) as a measurement of endothelial function in the adult population (age eighteen years or over). We calculated the pooled estimates of weighted mean differences (WMDs) and their 95% confidence intervals (CIs) by using random-effects models. Results: A total of nine papers (10 trials) involving 374 participants were included. The pooled estimates found that nut consumption significantly improved FMD (WMD: 0.41%; 95% CI: 0.18%, 0.63%; P = 0.001). Moderate and marginally significant heterogeneity was observed among the studies (I2 = 39.5%, P = 0.094). Subgroup analyses indicated that walnuts significantly improved FMD (WMD: 0.39%; 95% CI: 0.16%, 0.63%; P = 0.001). In addition, nut consumption had a significant effect on FMD in the trials with study duration <18 weeks, nut dose <67 g/d, or subjects with baseline FMD ≥8.6%. Conclusions: Nut consumption significantly improved endothelial function. However, the beneficial effect was limited to walnuts. More studies examining the effect of other nuts on endothelial function are needed in the future.

Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: results of an NHANES modeling study.

Rehm, C.D., A. Drewnowski. 2017. Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: results of an NHANES modeling study. Nutr. J. doi:10.1186/s12937017-0238-5.

Background: Replacing typical American snacks with tree nuts may be an effective way to improve diet quality and compliance with the 2015–2020 Dietary Guidelines for Americans (DGAs). Objective: To assess and quantify the impact of replacing typical snacks with composite tree nuts or almonds on diet metrics, including empty calories (i.e., added sugars and solid fats), individual fatty acids, macronutrients, nutrients of public health concern, including sodium, fiber and potassium, and summary measures of diet quality. Methods: Food pattern modeling was implemented in the nationally representative 2009–2012 National Health and Examination Survey (NHANES) in a population of 17,444 children and adults. All between-meal snacks, excluding beverages, were replaced on a per calorie basis with a weighted tree nut composite, reflecting consumption patterns in the population. Model 1 replaced all snacks with tree nuts, while Model 2 exempted whole fruits, non-starchy vegetables, and whole grains (>50% of total grain content). Additional analyses were conducted using almonds only. Outcomes of interest were empty calories (i.e., solid fats and added sugars), saturated and mono- and polyunsaturated fatty acids, fiber, protein, sodium, potassium and magnesium. The Healthy Eating Index-2010, which measures adherence to the 2010 Dietary Guidelines for Americans, was used as a summary measure of diet quality. Results: Compared to observed diets, modeled food patterns were significantly lower in empty calories (−20.1% and −18.7% in Model 1 and Model 2, respectively), added sugars (−17.8% and −16.9%), solid fats (−21.0% and −19.3%), saturated fat (−6.6% and −7.1%)., and sodium (−12.3% and −11.2%). Modeled patterns were higher in oils (65.3% and 55.2%), monounsaturated (35.4% and 26.9%) and polyunsaturated fats (42.0% and 35.7%), plant omega 3 s (53.1% and 44.7%), dietary fiber (11.1% and 14.8%), and magnesium (29.9% and 27.0%), and were modestly higher in potassium (1.5% and 2.9%). HEI-2010 scores were significantly higher in Model 1 (67.8) and in Model 2 (69.7) compared to observed diets (58.5). Replacing snacks with almonds only produced similar results; the decrease in sodium was more modest and no increase in plant omega-3 fats was observed. Conclusion: Replacing between-meal snacks with tree nuts or almonds led to more nutrient-rich diets that were lower in empty calories and sodium and had more favorable fatty acid profiles. Food pattern modeling using NHANES data can be used to assess the likely nutritional impact of dietary guidance.

 

Determination of myo-inositol phosphates in tree nuts and grain fractions by HPLC–ESI–MS.

Duong, Q.H., K.D. Clark, K.G. Lapsley, R.B. Pegg. 2017. Determination of myo-inositol phosphates in tree nuts and grain fractions by HPLC–ESI–MS. J. Food Comp. Anal. 59:74-82.

High-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC–ESI–MS) was utilized for the rapid, on-line detection of all six forms of inositol phosphate (InsP) in seven major tree nuts (i.e., cashews, Brazil nuts, macadamias, walnuts, pecans, pistachios, hazelnuts) and three grain components that are allegedly rich in phosphorus (wheat aleurone, rice bran, corn germ). The total InsP levels ranged from 3 to 20 μmol/g in the tree nuts and from 10 to 97 μmol/g in the grain components. While inositol hexakisphosphate was the predominant form in all samples, at least 20% of the InsP molar concentration comprised lower forms of InsPs. In tree nuts, InsPs accounted for 18–59% of the organic phosphorus content and 12–46% of the total phosphorus content. For grain samples, these values ranged from 66–97% and 58–80%, respectively. Significant differences in InsP levels among tree nuts underline the need for further investigation of InsPs in this food group, particularly with regard to different cultivars, growing conditions, and processing conditions. HPLC–ESI–MS offered a sensitive and time-efficient detection approach for InsPs in various complex nut and grain matrices, highlighting its potential application for many other sample types.

 

A PUFA-rich diet improves fat oxidation following saturated fat-rich meal.

Stevenson, J.L., M.K. Miller, H.E. Skillman, C.M. Paton, J.A. Cooper, 2017. A PUFA-rich diet improves fat oxidation following saturated fat-rich meal. Eur J Nutr. 56(5):1845–1857.

Purpose: To determine substrate oxidation responses to saturated fatty acid (SFA)-rich meals before and after a 7-day polyunsaturated fatty acid (PUFA)-rich diet versus control diet. Methods: Twenty-six, normal-weight, adults were randomly assigned to either PUFA or control diet. Following a 3-day lead-in diet, participants completed the pre-diet visit where anthropometrics and resting metabolic rate (RMR) were measured, and two SFA-rich HF meals (breakfast and lunch) were consumed. Indirect calorimetry was used to determine fat oxidation (Fox) and energy expenditure (EE) for 4 h after each meal. Participants then consumed a PUFA-rich diet (50% carbohydrate, 15% protein, 35% fat, of which 21% of total energy was PUFA) or control diet (50% carbohydrate, 15% protein, 35% fat, of which 7% of total energy was PUFA) for the next 7 days. Following the 7-day diet, participants completed the post-diet visit. Results: From pre- to post-PUFA-rich diet, there was no change in RMR (16.3 ± 0.8 vs. 16.4 ± 0.8 kcal/20 min) or in incremental area under the curve for EE (118.9 ± 20.6-126.9 ± 14.1 kcal/8h, ns). Fasting respiratory exchange ratio increased from pre- to post-PUFA-rich diet only (0.83 ± 0.1-0.86 ± 0.1, p < 0.05). The postprandial change in Fox increased from pre- to post-visit in PUFA-rich diet (0.03 ± 0.1-0.23 ± 0.1 g/15 min for cumulative Fox; p < 0.05), whereas controls showed no change. Conclusions: Adopting a PUFA-rich diet initiates greater fat oxidation after eating occasional high SFA meals compared to a control diet, an effect achieved in 7 days.

Changes of renal sinus fat and renal parenchymal fat during an 18-month randomized weight loss trial.

Zelicha, H., D. Schwarzfuchs, I. Shelef, Y. Gepner, G. Tsaban, L. Ten, A.Y. Meir, A. Bilitzky, O. Komy, N. Cohen, N. Bril, M. Rein, D. Serfaty, S. Kenigsbuch, Y. Chassidim, B. Sarusi, J. Thiery, U. Ceglarek, M. Stumvoll, M. Blüher, Y.S. Haviv, M.J. Stampfer, A. Rudich, I. Shai, 2017. Changes of renal sinus fat and renal parenchymal fat during an 18-month randomized weight loss trial. Clin Nutr. http://dx.doi.org/10.1016/j.clnu.2017.04.007.

Background & Aims: Data regarding the role of kidney adiposity, its clinical implications, and its dynamics during weight-loss are sparse. We investigated the effect of long-term weight-loss induced intervention diets on dynamics of renal-sinus-fat, an ectopic fat depot, and %renal-parenchymal-fat, lipid accumulation within the renal parenchyma. Methods: We randomized 278 participants with abdominal obesity/dyslipidemia to low-fat or Mediterranean/low-carbohydrate diets, with or without exercise. We quantified renal-sinus-fat and %renal-parenchymal-fat by whole body magnetic-resonance-imaging. Results: Participants (age = 48 years; 89% men; body-mass-index = 31 kg/m2) had 86% retention to the trial after 18 months. Both increased renal-sinus-fat and %renal-parenchymal-fat were directly associated with hypertension, and with higher abdominal deep-subcutaneous-adipose-tissue and visceral-adipose-tissue (p of trend < 0.05 for all) after adjustment for body weight. Higher renal-sinus-fat was associated with lower estimated-glomerular-filtration-rate and with higher microalbuminuria and %HbA1C beyond body weight. After 18 months of intervention, overall renal-sinus-fat (-9%; p < 0.05 vs. baseline) but not %renal-parenchymal-fat (-1.7%; p = 0.13 vs. baseline) significantly decreased, and similarly across the intervention groups. Renal-sinus-fat and %renal-parenchymal-fat changes were correlated with weight-loss per-se (p < 0.05). In a model adjusted for age, sex, and visceral-adipose-tissue changes, 18 months reduction in renal-sinus-fat associated with decreased pancreatic, hepatic and cardiac fats (p < 0.05 for all) and with decreased cholesterol/high-density lipoprotein-cholesterol (HDL-c) (β = 0.13; p = 0.05), triglycerides/HDL-c (β = 0.13; p = 0.05), insulin (β = 0.12; p = 0.05) and gamma glutamyl transpeptidase (β = 0.24; p = 0.001), but not with improved renal function parameters or blood pressure. Decreased intake of sodium was associated with a reduction in %renal-parenchymal-fat, after adjustment for 18 months weight-loss (β = 0.15; p = 0.026) and hypertension (β = 0.14; p = 0.04). Conclusions: Renal-sinus-fat and renal-parenchymal-fat are fairly related to weight-loss. Decreased renal-sinus-fat is associated with improved hepatic parameters, independent of changes in weight or hepatic fat, rather than with improved renal function or blood pressure parameters.

Changes in diet quality during a 12 month weight loss randomised controlled trial.

Wibisono,C., Y. Probst, E. Neale, L. Tapsell, 2017. Changes in diet quality during a 12 month weight loss randomised controlled trial. BMC Nutrition. 3:38 Doi: 10.1186/s40795-017-0157-z.

Abstract: Background: Reductions in energy intake are seen in weight loss trials, but whether this occurs with improvements to diet quality (DQ) is less established. The aim of this study was to evaluate changes in diet quality in a sample of volunteers in a weight loss trial. Methods This was a secondary analysis of dietary data from a lifestyle intervention trial (the HealthTrack study) which advised on dietary guidelines. The trial ran for 12 months with three treatment groups: control (general advice C), intervention (individualised advice, I), and intervention plus a supplement of walnuts (IW). Both the published a priori diet quality score (APDQS, maximum score 164) and a study specific Diet Quality Tracker (DQT, maximum score 44) indicated compliance to dietary advice. DQ scores calculated at 0, 3months and 12months were evaluated using two-way RMANOVA, one-way ANOVA and one-way RMANOVA. Changes in intakes of food groups and nutrients were analysed using Kruskal-Wallis and Friedman’s tests. Results There were no differences between groups at baseline, but at 3months IW recorded higher DQ scores (APDQS:96 ± 10; DQT:22 ± 5, P < 1 × 10−3 for both) compared to I (APDQS:91 ± 13, P < 1 × 10−3; DQT:21 ± 4, P < 1 × 10−2) and C (APDQS:87 ± 12, P < 5 × 10−2; DQT:19 ± 4, P > 5 × 10−2), and a higher consumption of nuts at 3 months (P < 1 × 10−3), and 12months (P < 1 × 10−2). All groups reported decreased intakes of discretionary foods/beverages assessed by the DQT (P < 1 × 10−3 for IW and I; P < 1 × 10−2 for C). The APDQS showed this as reduced intakes of grain-based desserts (P < 1 × 10−3 at 3 and 12months), and salty snacks at 12months (P < 1 × 10−3 for IW and I; P < 5 × 10−2 for C). Intakes of monounsaturated and saturated fatty acids were lowest, and polyunsaturated fatty acids highest for IW (P < 1 × 10−3), resulting in a higher dietary polyunsaturated:saturated fat ratio (P < 1 × 10−3). Conclusions: Lifestyle intervention addressing dietary guidelines can lead to significant reductions in consumption of discretionary foods and saturated fat, but individualised advice may have a greater impact on improving overall DQ regardless of DQI used. Providing a healthy food supplement may help assure higher DQ and where the food is walnuts, produce commensurate differences in dietary fatty acid profiles.

 

Effect of interdisciplinary care on weight loss: a randomized controlled trial.

Tapsell, L.C., M. Lonergan, M.J. Batterham, E.P. Neale, A. Martin, R. Thorne, F. Deane, G. Peoples, 2017. Effect of interdisciplinary care on weight loss: a randomized controlled trial. BMJ Open. 7:e014533. doi:10.1136/ bmjopen-2016-014533.

Objective: To determine the effectiveness of a novel interdisciplinary treatment compared with usual care on weight loss in overweight and obese adult volunteers. Design Single blinded controlled trial. Participants randomly assigned to usual care (C, general guideline based diet and exercise advice), intervention (I, interdisciplinary protocol) or intervention + a healthy food supplement (30 g walnuts/day) (IW). Setting Community based study, Illawarra region, south of Sydney, Australia. Participants: Generally well volunteer adult residents, 25-54 years, body mass index (BMI) 25-40kg/m2 were eligible. At baseline 439 were assessed, 377 were randomised, 298 completed the 3-month intensive phase and 178 completed the 12-month follow-up. Interventions Treatment was provided at clinic visits intensively (0 months, 1 month, 2 months, 3 months) then quarterly to 12 months. Support phone calls were quarterly. All participants underwent blinded assessments for diet, exercise and psychological status. Primary and secondary measures: The primary outcome was difference in weight loss between baseline and 12 months (clinically relevant target 5% loss). Secondary outcomes were changes in blood pressure, fasting blood glucose and lipids, and changes in diet, exercise and psychological parameters. Results At 12 months, differences in weight loss were identified (p<0.001). The I group lost more than controls at 3 months (91.11 (92.23,90.00), p<0.05) and the IW more than controls at 3 months (91.25 (92.35,90.15), p<0.05) and 6 months (92.20 (93.90,90.49), p<0.01). The proportion achieving 5% weight loss was significantly different at 3 months, 6 months and months (p=0.04, p=0.03, p=0.03), due to fewer controls on target at 3 months, 6 months and 9 months and more IW participants at 6 months. Reductions in secondary outcomes (systolic blood pressure, blood glucose/lipid parameters and lifestyle measures) followed the pattern of weight loss. Conclusions An interdisciplinary intervention produced greater and more clinically significant and sustained weight loss compared with usual care. The intensive phase was sufficient to reach clinically relevant targets, but long-term management plans may be required.

 

The feasibility of walnut and extra virgin olive oil supplementation in older adults.

Vitolins, M.Z., C.S. Blackwell, J.D. Williamson, C.G. Foy, S. Wilmoth, K.M. Sink, L.M. Reynolds, R.P. Byington, D.M. Reboussin, 2017. The feasibility of walnut and extra virgin olive oil supplementation in older adults. J Food Nutr Sci. 4(1):1-6.

Researchers in Spain provided randomized, controlled trial evidence that adding extra virgin olive oil (EVOO) and nuts to diets of older adults lowered cardiovascular disease risk. Supplementing these foods may represent a simple and straightforward approach to favourable dietary change with potential for dissemination to the broader public. This was an 8-week feasibility trial in which all participants were asked to supplement their ad libitum diets with both walnuts and EVOO to determine their interest in participating and to assess retention and adherence once enrolled. Inclusion criteria were broad: Adults ≥ 55 years old treated for hypertension with medication; exclusions included walnuts/EVOO allergies, homebound or diagnosis of dementia. Recruitment was assessed as number of weeks to accrue 25 participants. Adherence was assessed by participant self-report using a daily diary. Blood pressure (BP), body weight, and HDL cholesterol were measured to estimate the variability of outcomes. Results: Twenty- seven participants were recruited in 2 ½ weeks; 26 of the 27 participants remained in the study for a retention rate of 96% (95% CI: 78% – 100%). Of 216 possible diaries, 185 were returned (86%). On average, weight increased over 8 weeks by 0.8 pounds. Mean systolic BP dropped by 0.25 mmHg while mean diastolic BP decreased by 1.0 mmHg. Mean HDL increased by 1.96 mg/dL. A full-scale walnut/EVOO trial in older adults with hypertension seems realistic given our high rates of recruitment, retention, and adherence, coupled with minimal weight gain and favorable trends in BP and HDL.

 

Hunger and satiety responses to high-fat meals after a high-polyunsaturated fat diet: A randomized trial.

Stevenson, J.L., C.M. Paton, J.A. Cooper, 2017. Hunger and satiety responses to high-fat meals after a high-polyunsaturated fat diet: A randomized trial. Nutrition. 41:1-10.

Objective Previous studies have shown that polyunsaturated fats (PUFAs) elicit a greater response in satiety after a single-meal challenge compared with other types of fats. The long-term effects of PUFAs on satiety, however, remain unknown. The aim of this study was to determine subjective and physiological hunger and satiety responses to high-fat (HF) meals before and after a 7-d PUFA-rich diet. Methods Twenty-six, healthy weight (body mass index 18–24.9 kg/m2), sedentary adults were randomly assigned to either a 7-d PUFA-rich diet (n = 8 men and n = 8 women) or a 7-d control diet (n = 5 men and n = 5 women). After a 3-d lead-in diet, participants reported for the baseline visit where anthropometrics, fasting visual analog scale (VAS) measurements, and a fasting blood sample were collected. Then, two HF meals (breakfast and lunch) were consumed. Postprandial blood draws and VAS measures were collected approximately every 30 min for 4 h after each meal, for a total of 8 h. Results From pre- to post-PUFA–rich diet, there was a decrease in fasting ghrelin (P < 0.05) and an increase in fasting peptide YY (PYY; P < 0.05); however, there were no changes in fasting insulin or leptin concentrations. The postprandial response for PYY was higher after the PUFA-rich diet visit compared to baseline (P < 0.01). However, there were no differences in the postprandial response for ghrelin, insulin, leptin, or VAS measures from pre- to post-diet in either the PUFA-rich diet or control (ns). Conclusion A PUFA-rich diet consumed for 7 d favorably altered fasting and postprandial physiological markers of hunger and satiety; yet, did not alter subjective ratings of hunger or fullness.

The IL-6 gene promoter SNP and plasma IL-6 in response to diet intervention.

Rana, B.K., S.W. Flatt, D.D. Health, B. Pakiz, E.L. Quintana, L. Natarajan, C.L. Rock, 2017. The IL-6 gene promoter SNP and plasma IL-6 in response to diet intervention. Nutrients. 9, 552; Doi:10.3390/nu9060552

We recently reported that interleukin-6 (IL-6), an inflammatory marker associated with breast pathology and the development of breast cancer, decreases with diet intervention and weight loss in both insulin-sensitive and insulin-resistant obese women. Here, we tested whether an individual’s genotype at an IL6 SNP, rs1800795, which has previously been associated with circulating IL-6 levels, contributes to changes in IL-6 levels or modifies the effect of diet composition on IL-6 in these women. We genotyped rs1800795 in overweight/obese women (N = 242) who were randomly assigned to a lower fat (20% energy), higher carbohydrate (65% energy) diet; a lower carbohydrate (45% energy), higher fat (35% energy) diet; or a walnut-rich (18% energy), higher fat (35% energy), lower carbohydrate (45% energy) diet in a 1-year weight loss intervention study of obesity-related biomarkers for breast cancer incidence and mortality. Plasma IL-6 levels were measured at baseline, 6 and 12 months. At baseline, individuals with a CC genotype had significantly lower IL-6 levels than individuals with either a GC or GG genotype (p < 0.03; 2.72 pg/mL vs. 2.04 pg/mL), but this result was not significant when body mass index (BMI) was accounted for; the CC genotype group had lower BMI (p = 0.03; 32.5 kg/m² vs. 33.6 kg/m²). We did not observe a 2-way interaction of time*rs1800795 genotype or diet*rs1800795 genotype. Our findings provide evidence that rs1800795 is associated with IL-6 levels, but do not support a differential interaction effect of rs1800795 and diet composition or time on changes in circulating IL-6 levels. Diet intervention and weight loss are an important strategy for reducing plasma IL-6, a risk factor of breast cancer in women, regardless of their rs1800795 genotype.