Archive

Consumption of tree nuts as snacks stimulates changes in plasma fatty acid profiles and adipose tissue gene expression in young adults at risk for metabolic syndrome

Widmer, A., K. Lillegard, K. Wood, M. Robles, R. Fan, F. Ye, J.R. Koethe, H.J. Silver, 2025. Consumption of tree nuts as snacks stimulates changes in plasma fatty acid profiles and adipose tissue gene expression in young adults at risk for metabolic syndrome. Clinical Nutrition. (48)25 – 34. https://doi.org/10.1016/j.clnu.2025.03.002.

Background and aims: The prevalence of metabolic syndrome has been increasing in young adults, concomitant with the occurrence of increased abdominal adiposity. We previously reported that consuming tree nuts, as replacement for typical high-carbohydrate snacks, reduces visceral fat and waist circumference in young adults who have one or more metabolic syndrome risk factors. We aimed to investigate the effects of tree nuts snack consumption on plasma and adipose tissue fatty acid profiles along with changes in the expression of adipose tissue genes involved in thermogenesis, glycemia, adipocyte signaling, lipolysis, and immunity. Methods: A randomized parallel-arm 16-week intervention trial was conducted in 84 adults aged 22-36 years. Participants in both groups were provided with caloric goals for weight maintenance, daily menus, and pre-portioned snacks at every other week visits with study registered dietitians. Changes in dietary fatty acid intakes, plasma and abdominal subcutaneous adipose tissue (SAT) triglycerides fatty acid profiles using gas-liquid chromatography, and the expression of 241 genes in abdominal SAT were evaluated. Results: Consuming tree nuts snacks increased mono- and polyunsaturated fatty acid intakes yielding a 9-fold greater dietary unsaturated to saturated fat ratio. The tree nuts snack group also had significantly greater improvements in plasma 16:1/16:0 ratio; plasma phospholipids oleic and gamma linolenic acid content; plasma diglycerides, triglycerides, and cholesterol esters oleic acid content; and total plasma monounsaturated fatty acids. While abdominal SAT only showed trends for increased oleic acid content and unsaturated to saturated fat ratio, the tree nuts snacks participants had altered expression of 13 genes in abdominal SAT that have roles in nutrient sensing, energy homeostasis, and vulnerability to obesity. Conclusions: Replacing typical high-carbohydrate snacks with tree nuts results in more favorable dietary, plasma, and adipose tissue fatty acid profiles that could aid in preventing the development of excess adiposity and cardiometabolic disease states including metabolic syndrome.

A cross-sectional study on the association of walnut consumption with obesity and relative fat mass among United States adolescents and young adults in NHANES (2003–2020).

Gletsu-Miller, N., Henschel, B., Tekwe, C.D. and Thiagarajah, K., 2024. A cross-sectional study on the association of walnut consumption with obesity and relative fat mass among United States adolescents and young adults in NHANES (2003–2020). Curr Dev in Nutr. 8(8), p.104407. https://doi.org/10.1016/j.cdnut.2024.104407

Background: Walnuts contain nutrients and phytochemicals that can promote metabolic health. However, the high energy content of walnuts along with other nuts raises the concern that consuming nuts promotes obesity. Objectives: We sought to investigate the associations between consumption of walnuts as well as other nuts and measures of obesity in adolescents and young adults. Methods: This study included 8874 adolescents (12–19 y) and 10,323 young adults (20–39 y) from 8 waves of National Health and Nutrition Examination Survey data (2003–2020). The associations of consumption of 1) walnuts only (WO); 2) walnuts with other nuts (WON); 3) other nuts (ON); and 4) no nuts (NN) with obesity status and relative fat mass (RFM) were assessed using logistic and linear regressions stratified by age group and sex. Sample weights were used in all statistical analyses. Results: The mean daily intake of walnuts was not different between the 2 walnut consumption groups within each age group (adolescents: 2.18 [standard error (SE) 0.14] g; P = 0.917; young adults: 4.23 [0.37] g; P = 0.682). The WON group had the lowest prevalence of obesity (adolescents: 8.3%; young adults: 21.1%) while the NN group had the highest prevalence (adolescents: 24.1%; young adults: 35.4%). The models indicated lower odds of obesity in adolescent girls (odds ratio [OR]: 0.27; P < 0.05) and young adult women (OR: 0.58; P < 0.05) who consumed WON than in those who consumed NN. In both young women and girls, RFM was significantly lower in the WON and ON groups than the NN group (P < 0.001). In young men, WON consumption was also associated with a lower RFM (OR: −1.24; 95% confidence interval: −2.21, −0.28) compared with NN consumption. Conclusions: For adolescent girls and young women, dietary intake of walnuts combined with other nuts has the strongest inverse association with measures of obesity.

Nuts and seeds consumption impact on adolescent obesity: sex-specific associations from 2003 to 2018 National Health and Nutrition Examination Survey.

Yang Y, Zhang D, Chen B, Huang X, 2024. Nuts and seeds consumption impact on adolescent obesity: sex-specific associations from 2003 to 2018 National Health and Nutrition Examination Survey. Int J Food Sci Nutr. 75(5):453-462. https://doi.org/10.1080/09637486.2024.2314682

The nutritional benefits and immunological advantages of consuming nuts and seeds are well-established. However, the link between nuts and seeds consumption and the susceptibility of being overweight or obese among adolescents is not clear. This study aims to explore this relationship in adolescents aged 12-19. Using a weighted multiple logistic regression model, we analysed data of the Food Patterns Equivalents Database and the U.S. National Health and Nutrition Examination Survey (NHANES) from 2003 to 2018. We found a significant association between nuts and seeds consumption and a reduced odds of being overweight or obese in females. Specifically, females who habitually consumed nuts and seeds had lower odds of being overweight or obese (OR = 0.55, 95% CI: 0.32-0.94). Additionally, we found an L-shaped relationship between nuts and seeds consumption and appropriate waist-to-height ratio in males. The findings suggest that nuts and seeds consumption may contribute to healthier physical development in adolescents.

Almond supplementation on appetite measures, body weight, and body composition in adults: A systematic review and dose-response meta-analysis of 37 randomized controlled trials.

Chahibakhsh, N., N. Rafieipour, H. Rahimi, S. RajabiNezhad, S.A. Momeni, A. Motamedi, J. Malekzadeh, M.S. Islam, M. Mohammadi-Sartang, 2024. Almond supplementation on appetite measures, body weight, and body composition in adults: A systematic review and dose-response meta-analysis of 37 randomized controlled trials. Obes Rev. 25(5):e13711. https://doi.org/10.1111/obr.13711

Background and objective: Almond consumption has an inverse relationship with obesity and factors related to metabolic syndrome. However, the results of available clinical trials are inconsistent. Therefore, we analyzed the results of 37 randomized controlled trials (RCTs) and evaluated the association of almond consumption with subjective appetite scores and body compositions. Methods: Net changes in bodyweight, body mass index (BMI), waist circumference (WC), fat mass (FM), body fat percent, fat-free mass (FFM), waist-to-hip ratio (WHR), visceral adipose tissue (VAT), and subjective appetite scores were used to calculate the effect size, which was reported as a weighted mean differences (WMD) and 95% confidence interval (CI). Results: This meta-analysis was performed on 37 RCTs with 43 treatment arms. The certainty in the evidence was very low for appetite indices, body fat percent, FFM, VAT, and WHR, and moderate for other parameters as assessed by the GRADE evidence profiles. Pooled effect sizes indicated a significant reducing effect of almond consumption on body weight (WMD: -0.45 kg, 95% CI: -0.85, -0.05, p = 0.026), WC (WMD: -0.66 cm, 95% CI: -1.27, -0.04, p = 0.037), FM (WMD: -0.66 kg, 95% CI: -1.16, -0.17, p = 0.009), and hunger score (WMD: -1.15 mm, 95% CI: -1.98, -0.32, p = 0.006) compared with the control group. However, almond did not have a significant effect on BMI (WMD: -0.20 kg m-2, 95% CI: -0.46, 0.05, p = 0.122), body fat percent (WMD: -0.39%, 95% CI: -0.93, 0.14, p = 0.154), FFM (WMD: -0.06, 95% CI: -0.47, 0.34, p = 0.748), WHR (WMD: -0.04, 95% CI: -0.12, 0.02, p = 0.203), VAT (WMD: -0.33 cm, 95% CI: -0.99, 0.32), fullness (WMD: 0.46 mm, 95% CI: -0.95, 1.88), desire to eat (WMD: 0.98 mm, 95% CI: -4.13, 2.23), and prospective food consumption (WMD: 1.08 mm, 95% CI: -2.11, 4.28). Subgroup analyses indicated that consumption of ≥50 g almonds per day resulted in a significant and more favorable improvement in bodyweight, WC, FM, and hunger score. Body weight, WC, FM, body fat percent, and hunger scores were decreased significantly in the trials that lasted for ≥12 weeks and in the subjects with a BMI < 30 kg/m2. Furthermore, a significant reduction in body weight and WC was observed in those trials that used a nut-free diet as a control group, but not in those using snacks and other nuts. The results of our analysis suggest that almond consumption may significantly improve body composition indices and hunger scores when consumed at a dose of ≥50 g/day for ≥12 weeks by individuals with a BMI < 30 kg/m2. Conclusion: However, further well-constructed randomized clinical trials are needed in order ascertain the outcome of our analysis.

Pistachio (Pistacia vera L.) consumption improves cognitive performance and mood in overweight young adults: A pilot study.

Landaverde-Mejia, K., E. Dufoo-Hurtado, D. Camacho-Vega, M.E. Maldonado-Celis, S. Mendoza-Diaz, R. Campos-Vega, 2024. Pistachio (Pistacia vera L.) consumption improves cognitive performance and mood in overweight young adults: A pilot study. Food Chem. 457, 140211. https://doi.org/10.1016/j.foodchem.2024.140211

This pilot study evaluated the impact of pistachio consumption on cognitive performance and mood in overweight young adults. Pistachios were characterized (chemical and nutraceutical), and a baseline-final, uncontrolled nutritional intervention was performed (28 g of pistachio/28 days). Psychometric tests were applied to estimate cognitive performance and mood; anthropometric evaluation, biochemical analysis, and plasma antioxidant activity were included. The main component of nuts was lipids (48.1%). Pistachios consumption significantly (p ≤ 0.05) reduced waist circumference (−1.47 cm), total cholesterol (−10.21 mg/dL), LDL (−6.57 mg/dL), and triglycerides (−21.07 mg/dL), and increased plasma antioxidant activity. Pistachio supplementation improved risk tolerance (p ≤ 0.006) and decision-making strategy (p ≤ 0.002; BART-task), executive functions (BCST-task; p ≤ 0.006), and selective and sustained attention (Go/No-Go-test; p ≤ 0.016). The mood state was positively modulated (p ≤ 0.05) for anxiety, anger-hostility, and sadness-depression. These results show for the first time the benefits of pistachio consumption on cognitive performance and mood in overweight young adults.

Cashew nut (Anacardium occidentale L.) and cashew nut oil reduce cardiovascular risk factors in adults on weight-loss treatment: a randomized controlled three-arm trial (Brazilian Nuts Study).

Meneguelli, T.S., A.C.P. Kravchychyn, A.L. Wendling, A.P. Dionísio, J. Bressan, H.S.D. Martino, E. Tako, H.H.M. Hermsdorff, 2024. Cashew nut (Anacardium occidentale L.) and cashew nut oil reduce cardiovascular risk factors in adults on weight-loss treatment: a randomized controlled three-arm trial (Brazilian Nuts Study). Front Nutr. 11:1407028. https://doi.org/10.3389/fnut.2024.1407028

Introduction: Cashew nut contains bioactive compounds that modulate satiety and food intake, but its effects on body fat during energy restriction remains unknown. This study aimed to assess the effects of cashew nut and cashew nut oil on body fat (primary outcome) as well as adiposity, cardiometabolic and liver function markers (secondary outcomes). Materials and methods: An eight-week (8-wk) randomized controlled-feeding study involved 68 adults with overweight/obesity (40 women, BMI: 33 ± 4 kg/m2). Participants were randomly assigned to one of the energy-restricted (−500 kcal/d) groups: control (CT, free-nuts), cashew nut (CN, 30 g/d), or cashew nut oil (OL, 30 mL/d). Body weight, body composition, and blood collection were assessed at the baseline and endpoint of the study. Results: After 8-wk, all groups reduced significantly body fat (CT: −3.1 ± 2.8 kg; CN: −3.3 ± 2.7 kg; OL: −1.8 ± 2.6 kg), body weight (CT: −4.2 ± 3.8 kg; CN: −3.9 ± 3.1 kg; OL: −3.4 ± 2.4 kg), waist (CT: −5.1 ± 4.6 cm; CN: −3.9 ± 3.9 cm; OL: −3.7 ± 5.3 cm) and hip circumferences (CT: −2.9 ± 3.0 cm; CN:−2.7 ± 3.1 cm; OL: −2.9 ± 2.3 cm). CN group reduced liver enzymes (AST: −3.1 ± 5.3 U/L; ALT:−6.0 ± 9.9 U/L), while the OL-group reduced LDL-c (−11.5 ± 21.8 mg/dL) and atherogenic index (−0.2 ± 0.5). Both intervention groups decreased neck circumference (CN: −1.0 ± 1.2 cm; OL: −0.5 ± 1.2 cm) and apo B (CN: −6.6 ± 10.7 mg/dL; OL: −7.0 ± 15.3 mg/dL). Conclusion: After an 8-wk energy-restricted intervention, all groups reduced body fat (kg), weight, and some others adiposity indicators, with no different effect of cashew nut or cashew nut oil. However, participants in the intervention groups experienced additional reductions in atherogenic marker, liver function biomarkers, and cardiovascular risk factors (neck circumference and apo B levels), with these effects observed across the OL group, CN group, and both intervention groups, respectively.

Brazil nut (Bertholletia excelsa H.B.K.) consumption in energy-restricted intervention decreases proinflammatory markers and intestinal permeability of women with overweight/obesity: A controlled trial (Brazilian Nuts Study).

Silveira, B.K.S., A. da Silva, D.M.U.P. Rocha, K. Waskow, H.S.D. Martino, J. Bressan, H.H.M. Hermsdorff, 2024. Brazil nut (Bertholletia excelsa H.B.K.) consumption in energy-restricted intervention decreases proinflammatory markers and intestinal permeability of women with overweight/obesity: A controlled trial (Brazilian Nuts Study). J Nutr. 154(9):2670-2679.

Background: Obesity is associated with low-grade inflammation and increased intestinal permeability (IP). The Brazil nut (BN) (Bertholletia excelsa H.B.K.) appears to be a promising dietary intervention to control inflammation by enhancing antioxidant defenses. Objectives: We aimed to assess the effect of daily BN consumption on inflammatory biomarkers and IP in the context of an energy-restricted intervention. Furthermore, we evaluated the correlation between the changes in these inflammatory markers and the changes in serum selenium and IP. Methods: In this 8-wk nonrandomized controlled trial, 56 women with overweight or obesity were allocated into 2 groups, both following an energy-restricted diet (−500 kcal/d). The control group (CO) consumed a nut-free diet, while the BN group consumed 8 g BN/d, providing 347.2 μg selenium (Se). Inflammatory cytokines were analyzed in plasma and Se in serum. IP was assessed using the lactulose/mannitol test (LM ratio). Results: Forty-six women completed the intervention. Both groups achieved similar energy restriction (CO Δ= −253.7 ± 169.4 kcal/d; BN Δ= −265.8 ± 141.8 kcal/d) and weight loss (CO Δ= −2.5 ± 0.5 kg; BN Δ= −3.5 ± 0.5 kg). The BN group showed lower values of C-reactive protein, tumor necrosis factor, interleukin (IL)1-β, IL-8, percentage lactulose excretion, and LM ratio than the CO group. Additionally, changes in serum Se concentration were predictive of changes in IL-8 concentration (β: −0.054; adjusted R2: 0.100; 95% confidence interval [CI]: −0.100; −0.007; P = 0.025), and changes in IL-8 were predictive of changes in the LM ratio (β: 0.006; adjusted R2: 0.101; 95% CI: 0.001, 0.011; P = 0.024). Conclusions: Regular intake of BNs can be a promising complementary dietary strategy for controlling low-grade inflammation and improving IP in women with overweight/obesity undergoing energy-restricted treatment. However, the effects of BNs seem to be Se status-dependent.

Effect of nuts combined with energy restriction on the obesity treatment: A systematic review and meta-analysis of randomized controlled trials.

Vilela, D.L.d. S., A.d. Silva, A.C. Pelissari Kravchychyn, J. Bressan, H.H.M. Hermsdorff, 2024. Effect of nuts combined with energy restriction on the obesity treatment: A systematic review and meta-analysis of randomized controlled trials. Foods. 13(18):3008. https://doi.org/10.3390/foods13183008

Obesity is a multifactorial disease that is difficult to control worldwide. Although nuts are recognized health foods, the application of food in obesity management is unclear. We systematically reviewed the literature and performed a meta-analysis to evaluate if nut consumption favors people on energy restriction (ER) dietary interventions. Four databases were used to search for eligible articles in May 2024. This review was conducted according to the PRISMA guide, and the bias risk of papers was evaluated. For the meta-analysis, we extracted the endpoint values of the group’s variables and estimated the effect sizes by the random-effects model. Sixteen and ten articles were included in the systematic review and meta-analysis, respectively. Almonds were evaluated in the majority of studies (n = 6). The consumption of nuts (28 to 84 g/d, 4 to 72 months) included in ER (–250 to 1000 kcal/d) did not differently affect anthropometry (weight loss, BMI, waist and hip circumferences), body composition (fat mass, fat-free mass, or lean mass), markers of glucose (glycemia and insulinemia), lipid metabolism (total cholesterol, HDL-c, LDL-c, LDL-c/HDL-c, or triglycerides), and systolic and diastolic blood pressure. In most analyses, stratifying studies by type of nut or intervention time did not present different results in the meta-analysis. As there are few studies, in addition to great methodological variability, more high-quality trials are needed to confirm these results.

Efficacy of walnut supplementation in managing overweight and obesity: A meta-analysis of randomized clinical trials.

Liu, W., E. Li, M. Hu, 2024. Efficacy of walnut supplementation in managing overweight and obesity: A meta-analysis of randomized clinical trials. J. Funct. Foods. Volume 122, 106515. https://doi.org/10.1016/j.jff.2024.106515.

This study aimed to assess how effective walnut supplementation is in managing overweight and obesity. A thorough search of PubMed, Embase, and Cochrane Central Register of Controlled Trials was carried out until March 2024. Two reviewers independently examined the suitability of studies and assessed the quality of reporting in the randomized controlled trials (RCTs) that were included. The results indicated that adding walnuts to the diet significantly lowered total cholesterol (TC) levels (p < 0.0001) and low-density lipoprotein-cholesterol (LDL-C) levels (p < 0.001). However, there was no notable difference in weight loss (p > 0.05) and body mass index (BMI) (p > 0.05) between those who received walnut supplementation and the control groups. Based on the RCT data, it appears that walnut supplementation can effectively decrease TC and LDL-C levels. Additionally, it seems to be a safe choice for individuals who are overweight or obese, as it did not have an adverse effect on body weight.

Mixed nut consumption improves brain insulin sensitivity: a randomized, single-blinded, controlled, crossover trial in older adults with overweight or obesity.

 Nijssen, K.M., R.P. Mensink, J. Plat, D. Ivanov, H. Preissl, P.J. Joris, 2024. Mixed nut consumption improves brain insulin sensitivity: a randomized, single-blinded, controlled, crossover trial in older adults with overweight or obesity. Am J Clin Nutr. 119(2):314-323. https://doi.org/10.1016/j.ajcnut.2023.12.010

Background: Improving brain insulin sensitivity, which can be assessed by measuring regional cerebral blood flow (CBF) responses to intranasal insulin, may prevent age-related metabolic and cognitive diseases. Objectives: This study aimed to investigate longer-term effects of mixed nuts on brain insulin sensitivity in older individuals with overweight/obesity. MethodsIn a randomized, single-blinded, controlled, crossover trial, 28 healthy adults (mean ± standard deviation: 65 ± 3 years; body mass index: 27.9 ± 2.3 kg/m2) received either daily 60-g mixed nuts (15 g of walnuts, pistachio, cashew, and hazelnuts) or no nuts (control) for 16 weeks, separated by an 8-week washout period. Throughout the study, participants were instructed to adhere to the Dutch food-based dietary guidelines. During follow-up, brain insulin action was assessed by quantifying acute effects of intranasal insulin on regional CBF using arterial spin labeling magnetic resonance imaging. Furthermore, effects on peripheral insulin sensitivity (oral glucose tolerance test), intrahepatic lipids, and cardiometabolic risk markers were assessed. Results: Body weight and composition did not change. Compared with control, mixed nut consumption improved regional brain insulin action in 5 clusters located in the left (difference in CBF responses to intranasal insulin: -4.5 ± 4.7 mL/100 g/min; P < 0.001; -4.6 ± 4.8 mL/100 g/min; P < 0.001; and -4.3 ± 3.6 mL/100 g/min; P = 0.007) and right occipital lobes (-4.3 ± 5.6 mL/100 g/min; and -3.9 ± 4.9 mL/100 g/min; P = 0.028). A fifth cluster was part of the left frontal lobe (-5.0 ± 4.6 mL/100 g/min; P < 0.001). Peripheral insulin sensitivity was not affected. Intrahepatic lipid content (-0.7%-point; 95% CI: -1.3%-point to -0.1%-point; P = 0.027), serum low-density lipoprotein cholesterol concentration (-0.24 mmol/L; 95% CI: -0.44 to -0.04 mmol/L; P = 0.019), and systolic blood pressure (-5 mm Hg; 95% CI: -8 to -1 mm Hg; P = 0.006) were lower after the mixed nut intervention. Conclusions: Longer-term mixed nut consumption affected insulin action in brain regions involved in the modulation of metabolic and cognitive processes in older adults with overweight/obesity. Intrahepatic lipid content and different cardiometabolic risk markers also improved, but peripheral insulin sensitivity was not affected.