Archive

Acute feeding with almonds compared to a carbohydrate‑based snack improves appetite‑regulating hormones with no effect on self‑reported appetite sensations: a randomised controlled trial.

Carter, S., A.M. Hill, J.D. Buckley, S.‑Y. Tan, G.B. Rogers, A.M. Coates, 2022. Acute feeding with almonds compared to a carbohydrate‑based snack improves appetite‑regulating hormones with no effect on self‑reported appetite sensations: a randomised controlled trial. Eur. J. Nutr. 62:857–866.

Purpose: Early satiety has been identified as one of the mechanisms that may explain the beneficial effects of nuts for reducing obesity. This study compared postprandial changes in appetite-regulating hormones and self-reported appetite ratings after consuming almonds (AL, 15% of energy requirement) or an isocaloric carbohydrate-rich snack bar (SB). Methods This is a sub-analysis of baseline assessments of a larger parallel-arm randomised controlled trial in overweight and obese (Body Mass Index 27.5–34.9 kg/m2) adults (25–65 years). After an overnight fast, 140 participants consumed a randomly allocated snack (AL [n = 68] or SB [n = 72]). Appetite-regulating hormones and self-reported appetite sensations, measured using visual analogue scales, were assessed immediately before snack food consumption, and at 30, 60, 90 and 120 min following snack consumption. A sub-set of participants (AL, n = 49; SB, n = 48) then consumed a meal challenge buffet ad libitum to assess subsequent energy intake. An additional appetite rating assessment was administered post buffet at 150 min. Results: Postprandial C-peptide area under the curve (AUC) response was 47% smaller with AL compared to SB (p < 0.001). Glucose-dependent insulinotropic polypeptide, glucagon and pancreatic polypeptide AUC responses were larger with AL compared to SB (18%, p = 0.005; 39% p < 0.001; 45% p < 0.001 respectively). Cholecystokinin, ghrelin, glucagon-like peptide-1, leptin and polypeptide YY AUCs were not different between groups. Self-reported appetite ratings and energy intake following the buffet did not differ between groups. Conclusion: More favourable appetite-regulating hormone responses to AL did not translate into better self-reported appetite or reduced short-term energy consumption. Future studies should investigate implications for longer term appetite regulation.

The metabolomic-gut-clinical axis of Mankai plant-derived dietary polyphenols.

Yaskolka, M.A., K. Tuohy K, M. von Bergen, R. Krajmalnik-Brown, U. Heinig, H. Zelicha, G. Tsaban, E. Rinott, A. Kaplan, A. Aharoni, L. Zeibich, D. Chang, B. Dirks, C. Diotallevi, P. Arapitsas, U. Vrhovsek, U. Ceglarek, S.-B. Haange, U. Rolle-Kampczyk, B. Engelmann, M. Lapidot, M. Colt, Q. Sun, I., 2021. The metabolomic-gut-clinical axis of Mankai plant-derived dietary polyphenols. Nutrients. 13(6):1866. https://doi.org/10.3390/nu13061866.

Background: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa ‘Mankai’, a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. Methods: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. Results: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. Conclusions: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis.

Snacking on almonds lowers glycaemia and energy intake compared to a popular high-carbohydrate snack food: an acute randomised crossover study.

Brown, R., L. Ware, A.R. Gray, A. Chisholm, S.L. Tey, 2021. Snacking on almonds lowers glycaemia and energy intake compared to a popular high-carbohydrate snack food: an acute randomised crossover study. Int J Environ Res Public Health. 18(20):10989. https://doi.org/10.3390/ijerph182010989

Consuming nuts may have advantages over other snack foods for health and body-weight regulation. Suggested mechanisms include increased satiety and lower glycaemia. We used an acute randomised crossover trial to assess glycaemic and appetite responses to consuming two isocaloric snacks (providing 10% of participants’ total energy requirements or 1030 kJ (equivalent to 42.5 g almonds), whichever provided greater energy): raw almonds and sweet biscuits among 100 participants with available data (25 males and 75 females) following 106 being randomised. Two hours after consuming a standardised breakfast, participants consumed the snack food. Fingerprick blood samples measuring blood glucose and subjective appetite ratings using visual analogue scales were taken at baseline and at 15 or 30 min intervals after consumption. Two hours after snack consumption, an ad libitum lunch was offered to participants and consumption was recorded. Participants also recorded food intake for the remainder of the day. The mean area under the blood glucose response curve was statistically and practically significantly lower for almonds than biscuits (mean (95% CI) difference: 53 mmol/L.min (45, 61), p < 0.001). Only the composite appetite score at 90 min was higher in the almond treatment compared to the biscuit treatment (45.7 mm vs. 42.4 mm, p = 0.035 without adjustment for multiple comparisons). There was no evidence of differences between the snacks for all other appetite ratings or for energy intake at the ad libitum lunch. However, mean energy intakes following snack consumption were significantly lower, both statistically and in practical terms, for the almond treatment compared to the biscuit (mean (95% CI) diff: 638 kJ (44, 1233), p = 0.035). Replacing popular snacks with almonds may have advantages in terms of glycaemia and energy balance.

Branched-chain amino acids in relation to food preferences and insulin resistance in obese subjects consuming walnuts: A cross-over, randomized, double-blind, placebo-controlled inpatient physiology study.

Tuccinardi, D., N. Perakakis, O.M. Farr, J. Upadhyay, C.S. Mantzoros, 2021. Branched-chain amino acids in relation to food preferences and insulin resistance in obese subjects consuming walnuts: A cross-over, randomized, double-blind, placebo-controlled inpatient physiology study. Clin Nutr. 40(5):3032-3036.

Background & aims: To assess whether the concentrations of circulating Branched-Chain Amino Acids (BCAAs) change after walnut consumption and, whether these changes are associated with alterations in markers of insulin resistance and food preferences. Methods: In a crossover, randomized, double-blind, placebo-controlled study, ten subjects participated in two 5-day inpatient study admissions, during which they had a smoothie containing 48 g walnuts or a macronutrient-matched placebo smoothie without nuts every morning. Between the two phases there was a 1-month washout period. Results: Fasting valine and isoleucine levels were reduced (p = .047 and p < .001) and beta-hydroxybutyrate levels were increased after 5-days of walnut consumption compared to placebo (p = .023). Fasting valine and isoleucine correlated with HOMA-IR while on walnut (r = 0.709, p = .032 and r = 0.679, p = .044). The postprandial area under the curve (AUC) of leucine in response to the smoothie consumption on day 5 was higher after walnut vs placebo (p = .023) and correlated negatively with the percentage of Kcal from carbohydrate and protein consumed during an ad libitum buffet meal consumed the same day for lunch (r = −0.661, p = .037; r = −0.628, p = .05, respectively). Conclusion: The fasting and post-absorptive profiles of BCAAs are differentially affected by walnut consumption. The reduction in fasting valine and isoleucine may contribute to the longer-term benefits of walnuts on insulin resistance, cardiovascular risk and mortality, whereas the increase in post-absorptive profiles with walnuts may influence food preference.