Ros, E., 2015. Nuts and CVD. Br J Nutr. 113, S111–S120.
Nuts are nutrient-dense foods with complex matrices rich in unsaturated fatty acids and other bioactive compounds, such as l-arginine, fibre, healthful minerals, vitamin E, phytosterols and polyphenols. By virtue of their unique composition, nuts are likely to beneficially affect cardiovascular health. Epidemiological studies have associated nut consumption with a reduced incidence of CHD in both sexes and of diabetes in women, but not in men. Feeding trials have clearly demonstrated that consumption of all kinds of nuts has a cholesterol-lowering effect, even in the context of healthy diets. There is increasing evidence that nut consumption has a beneficial effect on oxidative stress, inflammation and vascular reactivity. Blood pressure, visceral adiposity and the metabolic syndrome also appear to be positively influenced by nut consumption. Contrary to expectations, epidemiological studies and clinical trials suggest that regular nut consumption is not associated with undue weight gain. Recently, the PREvención con DIeta MEDiterránea randomised clinical trial of long-term nutrition intervention in subjects at high cardiovascular risk provided first-class evidence that regular nut consumption is associated with a 50% reduction in incident diabetes and, more importantly, a 30% reduction in CVD. Of note, incident stroke was reduced by nearly 50% in participants allocated to a Mediterranean diet enriched with a daily serving of mixed nuts (15 g walnuts, 7·5 g almonds and 7·5 g hazelnuts). Thus, it is clear that frequent nut consumption has a beneficial effect on CVD risk that is likely to be mediated by salutary effects on intermediate risk factors.
Gepner, Y., N. Bril, I. Shelef, D. Schwarzfuchs, D. Serfaty, M. Rein, N. Cohen, E. Shemesh, O. Tangi-Rosental, B. Sarusi, E. Goshen, S. Kenigsbuch, Y. Chassidim, R. Golan, S. Witkow, Y. Henkin, MJ. Stampfer, A. Rudich, I. Shai, 2015. Higher visceral adiposity is associated with an enhanced early thermogenic response to carbohydrate-rich food. Clin Nutr. 35(2):422-7.
Background: Studies examining the dynamics of the thermic effect of feeding (TEF) of specific food items and the relationship of TEF to visceral adiposity are limited. Methods: We measured resting energy expenditure (REE) and early-TEF (40-min postprandial, e-TEF) after 8-h fast by indirect calorimetry in 40 obese men, and imaged abdominal fat tissues by magnetic resonance imaging. Each participant was examined on two occasions, 3-weeks apart. At each examination we measured fasting REE and then postprandial REE following the isocaloric [∼380 kcal] consumption of either 56 gr walnuts [(8% carbohydrates; 84% fat, of which 72% polyunsaturated fat)], or 5-slices (150gr) of whole-grain bread (48% carbohydrates; 32% fat). e-TEF was calculated as the area under the curve between the fasting and postprandial tests. Results: Participants had a mean age of 45 ± 8 years, body-mass-index (BMI) = 31.1 ± 3.8 kg/m2, total abdominal fat area = 901.4 ± 240 cm2, visceral fat area (VAT) = 260 ± 102.9 cm2, fasting REE = 1854 ± 205 kcal, REE/kg = 19.39 ± 1.73 kcal/kg, and respiratory quotient (RQ, CO2 eliminated/O2 consumed) = 0.82 ± 0.04. Individuals who exhibited increased e-TEF (top ΔAUC median) to bread had higher VAT (299 cm2 vs. 223 cm2; p = 0.024) and higher BMI (32.4 kg/m2 vs. 30.0 kg/m2; p = 0.013), compared to their peers with the lower e-TEF response (ΔAUC below median). As expected, postprandial e-TEF was higher after whole-grain bread consumption [ΔAUC = +14 kcal/40min] compared to walnuts [ΔAUC = -2 kcal/40 min; p < 0.001]. Conclusions: Higher early thermic effect of high-carbohydrate food, likely reflecting digestion, early absorption and/or sympathetic tone (rather than metabolic utilization (oxidation)), associates with visceral adiposity. Future studies are required to determine if this association represents an added causality between early carbohydrate processing and visceral fat accumulation.
Austel, A., C. Ranke, N. Wagner, J. Görge, T. Ellrott, 2015. Weight loss with a modified Mediterranean-type diet using fat modification: a randomized controlled trial. Eur J Clin Nutr. 69(8):878-84
Background/Objective: There is evidence that Mediterranean diets with a high proportion of olive oil and nuts can be effective for weight management and prevention of cardiovascular disease. It might be difficult for populations with other eating habits to follow such diets. Therefore, a modified Mediterranean-type diet using fat modification through neutral and butter-flavored canola oil, walnuts and walnut oil with two portion-controlled sweet daily snacks was tested in Germany. Subjects/Methods: Randomized waiting-list control study with overweight/grade 1 obese subjects: 12-week self-help modified Mediterranean-type diet, 6 weeks of diet plans and 6 weeks of weight loss maintenance training. Trial duration was 12 months. Intervention group (IG) included 100 participants (average age of 52.4 years, weight 85.1 kg and body mass index (BMI) 30.1 kg/m2), waiting-list control group (CG) included 112 participants (52.6 years, 84.1 kg and 30.1 kg/m2). Results: Per-protocol weight loss after 12 weeks was 5.2 kg in IG vs 0.4 kg in CG (P⩽0.0001), BMI -1.8 vs -0.1 kg/m2 (P⩽0.0001), waist circumference -4.7 vs -0.9 cm (P⩽0.0001). Triglycerides, total cholesterol and LDL cholesterol improved significantly in IG but not in CG. One-year dropouts: 44% in IG and 53% in CG. Weight loss after 12 months: 4.2 kg (pooled data). Conclusions: A five-meal modified Mediterranean-type diet with two daily portion-controlled sweet snacks was effective for weight management in a self-help setting for overweight and grade 1 obese subjects. Fat modification through canola oil, walnuts and walnut oil improved blood lipids even at 12 months.
O’Neil, C.E., V.L. Fulgoni, T.A. Nicklas, 2015. Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005–2010. Nutrition Journal. 14:64. DOI 10.1186/s12937-015-0052-x
Introduction: Previous research has shown inconsistencies in the association of tree nut consumption with risk factors for cardiovascular disease (CVD) and metabolic syndrome (MetS). Objective: To determine the association of tree nut consumption with risk factors for CVD and for MetS in adults. Methods: NHANES 2005–2010 data were used to examine the associations of tree nut consumption with health risks in adults 19+ years (n = 14,386; 51 % males). Tree nuts were: almonds, Brazil nuts, cashews, filberts [hazelnuts], macadamias, pecans, pine nuts, pistachios, and walnuts. Group definitions were non-consumers < ¼ ounce/day and consumers of ≥ ¼ ounce/day tree nuts using data from 24-h dietary recalls. Means and ANOVA (covariate adjusted) were determined using appropriate sample weights. Using logistic regression, odds ratios of being overweight (OW)/obese (OB) (body mass index [BMI] >25/<30 and ≥30, respectively) and having CVRF or MetS, were determined. Results: Tree nut consumption was associated with lower BMI (p = 0.004), waist circumference (WC) (p = 0.008), systolic blood pressure (BP) (p = 0.001), Homeostatic Model Assessment—Insulin Resistance (p = 0.043), and higher high density lipoprotein-cholesterol (p = 0.022), compared with no consumption, and a lower likelihood of OB (−25 %), OW/OB (−23 %), and elevated WC (−21 %). Conclusions: Tree nut consumption was associated with better weight status and some CVRF and MetS components.
Berryman, C.E., S.G. West, J.A. Fleming, P.L. Bordi, P.M. Kris-Etherton, 2015. Effects of daily almond consumption on cardiometabolic risk and abdominal adiposity in healthy adults with elevated LDL-cholesterol: A randomized controlled trial. J Am Heart Assoc. doi:10.1161/JAHA.114.000993.
Background: Evidence consistently shows that almond consumption beneficially affects lipids and lipoproteins. Almonds, however, have not been evaluated in a controlled-feeding setting using a diet design with only a single, calorie-matched food substitution to assess their specific effects on cardiometabolic risk factors. Methods and Results: In a randomized, 2-period (6 week/period), crossover, controlled-feeding study of 48 individuals with elevated LDL-C (149±3 mg/dL), a cholesterol-lowering diet with almonds (1.5 oz. of almonds/day) was compared to an identical diet with an isocaloric muffin substitution (no almonds/day). Differences in the nutrient profiles of the control (58% CHO, 15% PRO, 26% total fat) and almond (51% CHO, 16% PRO, 32% total fat) diets were due to nutrients inherent to each snack; diets did not differ in saturated fat or cholesterol. The almond diet, compared with the control diet, decreased non-HDL-C (-6.9±2.4 mg/dL; P=0.01) and LDL-C (-5.3±1.9 mg/dL; P=0.01); furthermore, the control diet decreased HDL-C (-1.7±0.6 mg/dL; P<0.01). Almond consumption also reduced abdominal fat (-0.07±0.03 kg; P=0.02) and leg fat (-0.12±0.05 kg; P=0.02), despite no differences in total body weight. Conclusions: Almonds reduced non-HDL-C, LDL-C, and central adiposity, important risk factors for cardiometabolic dysfunction, while maintaining HDL-C concentrations. Therefore, daily consumption of almonds (1.5 oz.), substituted for a high-carbohydrate snack, may be a simple dietary strategy to prevent the onset of cardiometabolic diseases in healthy individuals.
Tan, S.Y., J. Dhillon, R.D. Mattes, 2014. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am J Clin Nutr. doi: 10.3945/ajcn.113.071456.
Tree nuts and peanuts are good sources of many nutrients and antioxidants, but they are also energy dense. The latter often limits intake because of concerns about their possible contribution to positive energy balance. However, evidence to date suggests that nuts are not associated with predicted weight gain. This is largely due to their high satiety value, leading to strong compensatory dietary responses, inefficiency in absorption of the energy they contain, a possible increment in resting energy expenditure, and an augmentation of fat oxidation. Preliminary evidence suggests that these properties are especially evident when they are consumed as snacks.
Hull, S., R. Re, L. Chambers, A. Echaniz, M.S.J. Wickham, 2014. A mid-morning snack of almonds generates satiety and appropriate adjustment of subsequent food intake in healthy women. Eur J Nutr. DOI 10.1007/s00394-014-0759-z
Purpose: To assess the effect of consuming a mid-morning almond snack (28 and 42 g) tested against a negative control of no almonds on acute satiety responses. Method: On three test days, 32 healthy females consumed a standard breakfast followed by 0, 28 or 42 g of almonds as a mid-morning snack and then ad libitum meals at lunch and dinner. The effect of the almond snacks on satiety was assessed by measuring energy intake (kcal) at the two ad libitum meals and subjective appetite ratings (visual analogue scales) throughout the test days. Results: Intake at lunch and dinner significantly decreased in a dose-dependent manner in response to the almond snacks. Overall, a similar amount of energy was consumed on all three test days indicating that participants compensated for the 173 and 259 kcals consumed as almonds on the 28 and 42 g test days, respectively. Subjective appetite ratings in the interval between the mid-morning snack and lunch were consistent with dose-dependent enhanced satiety following the almond snacks. However, in the interval between lunch and dinner, appetite ratings were not dependent on the mid-morning snack. Conclusion: Almonds might be a healthy snack option since their acute satiating effects are likely to result in no net increase in energy consumed over a day.
Sánchez-González, C., Ciudad, C.J., Noé, V., Izquierdo-Pulido, M., 2014. Walnut polyphenol metabolites, urolithins A and B, inhibit the expression of the prostate-specific antigen and the androgen receptor in prostate cancer cells. Food Funct. 5(11):2922-30.
Walnuts have been gathering attention for their health-promoting properties. They are rich in polyphenols, mainly ellagitannins (ETs) that after consumption are hydrolyzed to release ellagic acid (EA). EA is further metabolized by microbiota to form urolithins, such as A and B, which are absorbed. ETs, EA and urolithins have shown to slow the proliferation and growth of different types of cancer cells but the mechanisms remain unclear. We investigate the role of urolithins in the regulatory mechanisms in prostate cancer, specifically those related to the androgen receptor (AR), which have been linked to the development of this type of cancer. In our study, urolithins down-regulated the mRNA and protein levels of both prostate specific antigen (PSA) and AR in LNCaP cells. The luciferase assay performed with a construct containing three androgen response elements (AREs) showed that urolithins inhibit AR-mediated PSA expression at the transcriptional level. Electrophoretic mobility shift assays revealed that urolithins decreased AR binding to its consensus response element. Additionally, urolithins induced apoptosis in LNCaP cells, and this effect correlated with a decrease in Bcl-2 protein levels. In summary, urolithins attenuate the function of the AR by repressing its expression, causing a down-regulation of PSA levels and inducing apoptosis. Our results suggest that a diet rich in ET-containing foods, such as walnuts, could contribute to the prevention of prostate cancer.
Toner, C.D, 2014. Communicating clinical research to reduce cancer risk through diet: Walnuts as a case example. Nutr Res Pract. 8(4):347-5.
Inflammation is one mechanism through which cancer is initiated and progresses, and is implicated in the etiology of other conditions that affect cancer risk and prognosis, such as type 2 diabetes, cardiovascular disease, and visceral obesity. Emerging human evidence, primarily epidemiological, suggests that walnuts impact risk of these chronic diseases via inflammation. The published literature documents associations between walnut consumption and reduced risk of cancer, and mortality from cancer, diabetes, and cardiovascular disease, particularly within the context of the Mediterranean Diet. While encouraging, follow-up in human intervention trials is needed to better elucidate any potential cancer prevention effect of walnuts, per se. In humans, the far-reaching positive effects of a plant-based diet that includes walnuts may be the most critical message for the public. Indeed, appropriate translation of nutrition research is essential for facilitating healthful consumer dietary behavior. This paper will explore the translation and application of human evidence regarding connections with cancer and biomarkers of inflammation to the development of dietary guidance for the public and individualized dietary advice. Strategies for encouraging dietary patterns that may reduce cancer risk will be explored.
Le, V., Esposito, D., Grace, M.H., Ha, D., Pham, A., Bortolazzo, A., Bevens, Z., Kim, J., Okuda, R., Komarnytsky, S., Lila, M.A., White, J.B., 2014. Cytotoxic effects of ellagitannins isolated from walnuts in human cancer cells. Nutr Cancer. 66(8):1304-14.
Walnuts contain many bioactive components that may slow cancer growth. A previous report showed that a diet supplemented with walnuts decreased the tumor size formed by MDA-MB-231 human cancer cells injected into nude mice. However, the mechanism of action was never determined. We characterized the effects of a methanol extract prepared from walnuts on human MDA-MB-231, MCF7, and HeLa cells. The extract was cytotoxic to all cancer cells. We identified compounds from the methanol extract that induced this cytotoxicity. The predominant compounds were Tellimagrandin I and Tellimagrandin II, members of the ellagitannin family. We also show a walnut extract decreases the intracellular pH, depolarizes the mitochondrial membrane with release of cytochrome c and phosphatidylserine flipping. The antimitogenic effects of walnut extract were associated with a twofold reduction of mitochondria respiration. These results suggest impairment of mitochondrial function and apoptosis as relevant mechanism of anticancer effects of the walnut extract.