Archive

Health benefits of pistachios consumption.

Terzo, S., S. Baldassano, G.F. Caldara, V. Ferrantelli, G. Lo Dico, F. Mulè, A. Amato, 2019. Health benefits of pistachios consumption. Nat Prod Res. 33(5):715-726.

The health benefits of nuts, mainly in relation to the improvement of dysmetabolic conditions such as obesity, type 2 diabetes mellitus and the related cardiovascular diseases, have been widely demonstrated. Compared to other nuts, pistachios have a lower fat and caloric content, and contain the highest levels of unsaturated fatty acids, potassium, γ-tocopherol, phytosterols and xanthophyll carotenoids, all substances that are well known for their antioxidant and anti-inflammatory actions. This variety of nutrients contributes to the growing body of evidence that the consumption of pistachios improves health, leading to a greater potential of healthy antioxidant and anti-inflammatory activity, glycemic control, and endothelial function. The present review examines the nutrients and phytochemicals present in pistachios as well as the potential health benefits of including pistachios in a diet.

Identification of plasma lipid metabolites associated with nut consumption in US men and women.

Malik, V.S., M. Guasch-Ferre, F.B. Hu, M.K. Townsend, O.A. Zeleznik, A.H. Eliassen, S.S. Tworoger, E.W. Karlson, K.H. Costenbader, A. Ascherio, K.M. Wilson, L.A. Mucci, E.L. Giovannucci, C.S. Fuchs, Y. Bao, 2019. Identification of plasma lipid metabolites associated with nut consumption in US men and women. J Nutr 149:1215–1221.

BACKGROUND: Intake of nuts has been inversely associated with risk of type 2 diabetes and cardiovascular disease, partly through inducing a healthy lipid profile. How nut intake may affect lipid metabolites remains unclear. OBJECTIVE: The aim of this study was to identify the plasma lipid metabolites associated with habitual nut consumption in US men and women. METHODS: We analyzed cross-sectional data from 1099 participants in the Nurses’ Health Study (NHS), NHS II, and Health Professionals Follow-up Study. Metabolic profiling was conducted on plasma by LC-mass spectrometry. Nut intake was estimated from food-frequency questionnaires. We included 144 known lipid metabolites that had CVs ≤25%. Multivariate linear regression was used to assess the associations of nut consumption with individual plasma lipid metabolites. RESULTS: We identified 17 lipid metabolites that were significantly associated with nut intake, based on a 1 serving (28 g)/d increment in multivariate models [false discovery rate (FDR) P value <0.05]. Among these species, 8 were positively associated with nut intake [C24:0 sphingomyelin (SM), C36:3 phosphatidylcholine (PC) plasmalogen-A, C36:2 PC plasmalogen, C24:0 ceramide, C36:1 PC plasmalogen, C22:0 SM, C34:1 PC plasmalogen, and C36:2 phosphatidylethanolamine plasmalogen], with changes in relative metabolite level (expressed in number of SDs on the log scale) ranging from 0.36 to 0.46 for 1 serving/d of nuts. The other 9 metabolites were inversely associated with nut intake with changes in relative metabolite level ranging from -0.34 to -0.44. In stratified analysis, 3 metabolites were positively associated with both peanuts and peanut butter (C24:0 SM, C24:0 ceramide, and C22:0 SM), whereas 6 metabolites were inversely associated with other nuts (FDR P value <0.05). CONCLUSIONS: A panel of lipid metabolites was associated with intake of nuts, which may provide insight into biological mechanisms underlying associations between nuts and cardiometabolic health. Metabolites that were positively associated with intake of nuts may be helpful in identifying potential biomarkers of nut intake.

Effect of pistachio on brachial artery diameter and flow-mediated dilatation: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies.

Fogacci, F., A.F.G. Cicero, G. Derosa, M. Rizzo, M. Veronesi, C. Borghi, 2019. Effect of pistachio on brachial artery diameter and flow-mediated dilatation: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies. Crit Rev Food Sci Nutr. 59(2):328-335.

BACKGROUND: Results of previous clinical trials evaluating the effect of pistachio supplementation on endothelial reactivity (ER) are controversial. AIMS: We aimed to assess the impact of pistachio on ER through systematic review of literature and meta-analysis of available randomized, controlled-feeding clinical studies (RCTs). METHODS: The literature search included SCOPUS, PubMed-Medline, ISI Web of Science and Google Scholar databases up to 1st August 2017 to identify RCTs investigating the impact of pistachio on ER. Two independent reviewers extracted data on study characteristics, methods and outcomes. Overall, the impact of pistachio on ER was reported in 4 trials. RESULTS: The meta-analysis did not suggest a significant change in brachial artery flow-mediated dilatation (FMD) (WMD: +0.28%; 95% CI: -0.58, 1.13; p = 0.525) while brachial artery diameter (BAD) improved (WMD: +0.04%; 95% CI: 0.03, 0.06; p<0.001) following pistachios consumption. CONCLUSION: The present meta-analysis suggests a significant effect of pistachios on ER, affecting BAD but not FMD.

Health benefits of nut consumption in middle‐aged and elderly population.

Rusu, M.E., A. Mocan, I.C.F.R. Ferreira, D.-S. Popa, 2019. Health benefits of nut consumption in middle‐aged and elderly population. Antioxidants. 8, 302; doi:10.3390/antiox8080302.

Aging is considered the major risk factor for most chronic disorders. Oxidative stress and chronic inflammation are two major contributors for cellular senescence, downregulation of stress response pathways with a decrease of protective cellular activity and accumulation of cellular damage, leading in time to age‐related diseases. This review investigated the most recent clinical trials and cohort studies published in the last ten years, which presented the influence of tree nut and peanut antioxidant diets in preventing or delaying age‐related diseases in middle‐aged and elderly subjects (≥55 years old). Tree nut and peanut ingestion has the possibility to influence blood lipid count, biochemical and anthropometric parameters, endothelial function and inflammatory biomarkers, thereby positively affecting cardiometabolic morbidity and mortality, cancers, and cognitive disorders, mainly through the nuts’ healthy lipid profile and antioxidant and anti-inflammatory mechanisms of actions. Clinical evidence and scientific findings demonstrate the importance of diets characterized by a high intake of nuts and emphasize their potential in preventing age‐related diseases, validating the addition of tree nuts and peanuts in the diet of older adults. Therefore, increased consumption of bioactive antioxidant compounds from nuts clearly impacts many risk factors related to aging and can extend health span and lifespan.

Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An updated review based on meta-analyses.

Kim, Y., J.B. Keogh, P.M. Clifton, 2019. Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An updated review based on meta-analyses. Int. J. Environ. Res. Public Health. 16, 4957; doi:10.3390/ijerph16244957.

Aim. We aimed to determine if nut consumption decreases mortality and/or the risk of cardiometabolic diseases based on updated meta-analyses of epidemiological and intervention studies. Methods. An updated electronic search was conducted in PubMed/MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and the Cochrane Library databases for original meta-analyses to investigate the effects of nut consumption on cardiometabolic disease in humans. Results. Seven new meta-analyses were included in this updated review. Findings similar to our previous review were observed, showing that nut consumption significantly decreased cardiovascular disease (CVD) mortality (-19% to -25%; n = 4), coronary heart disease (CHD) mortality (-24% to -30%; n = 3), stroke mortality (-17% to -18%; n = 3), CVD incidence (-15% to -19 %; n = 4), CHD [or coronary artery disease (CAD)] incidence (-17% to -34%; n = 8), and stroke incidence (-10% to -11%; n = 6) comparing high with low categories of nut consumption. Fasting glucose levels (0.08 to 0.15 mmol/L; n = 6), total cholesterol (TC; 0.021 to 0.30 mmol/L; n = 10), and low-density lipoprotein cholesterol (LDL-C; 0.017 to 0.26 mmol/L; n = 10) were significantly decreased with nut consumption compared with control diets. Body weight and blood pressure were not significantly affected by nut consumption. Conclusion. Nut consumption appears to exert a protective effect on cardiometabolic disease, possibly through improved concentrations of fasting glucose, total cholesterol, and LDL-C.

Effects of consuming almonds on insulin sensitivity and other cardiometabolic health markers in adults with prediabetes.

Palacios, O.M., K.C. Maki, D. Xiao, M.L. Wilcox, M.R. Dicklin, M. Kramer, R. Trivedi, B. Burton-Freeman, I. Edirisinghe, 2019. Effects of consuming almonds on insulin sensitivity and other cardiometabolic health markers in adults with prediabetes. Journal of the American College of Nutrition. doi:10.1080/07315724.2019.1660929.

Objective: This study was designed to assess the effects of replacing high-carbohydrate (CHO) foods with raw almonds on insulin sensitivity and cardiometabolic health markers in overweight or obese adults with prediabetes. Method: This randomized crossover study consisted of two 6-week dietary intervention periods, separated by a ≥ 4-week washout. Subjects incorporated 1.5oz of raw almonds twice daily or isocaloric CHO-based foods into their diets, with instructions to maintain body weight. Dietary intakes as well as insulin sensitivity, CHO metabolism indices, lipoprotein lipids and particles, and inflammatory markers were assessed. Results: Thirty-three subjects (17 male, 16 female), mean age 48.3±2.2years and body mass index 30.5±0.7kg/m2, provided evaluable data. Compared to CHO, almonds resulted in significantly (p<0.01) higher intakes of protein, fat (unsaturated fatty acids), fiber, and magnesium and significantly (p<0.001) lower intakes of CHO and sugars. No differences were observed between diet conditions for changes from baseline in the insulin sensitivity index from a short intravenous glucose tolerance test or other indices of glucose homeostasis. No significant differences were observed in biomarkers of cardiovascular risk except that the CHO intervention led to a shift toward a higher concentration of cholesterol in small, dense low-density lipoprotein subfraction 3+4 (LDL3+4) particles (p = 0.024 vs almonds). Conclusions: Intake of 3.0 oz/d raw almonds, vs energy-matched CHO foods, improved the dietary nutrient profile, but did not significantly affect insulin sensitivity and most markers of cardiometabolic health in overweight and obese men and women with prediabetes.

Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese subjects: a cross‐over, randomized, double‐blinded, controlled inpatient physiology study.

Tuccinardi, D., O.M. Farr, J. Upadhyay, S.M. Oussaada, M.I. Klapa, M. Candela, S. Rampelli, S. Lehoux, I. Lázaro, A. Sala‐Vila, P. Brigidi, R.D. Cummings, C.S. Mantzoros, 2019. Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese subjects: a cross‐over, randomized, double‐blinded, controlled inpatient physiology study. Diabetes Obes Metab. 21(9):2086-2095.

Aims: To assess the effects of walnuts on cardiometabolic outcomes in obese subjects and to explore underlying mechanisms using novel methods including metabolomic, lipidomic, glycomic, and microbiome analysis integrated with lipid particle fractionation, appetite-regulating hormones and hemodynamic measurements. Materials and Methods: 10 obese subjects were enrolled in this cross-over, randomized, double-blind, placebo-controlled clinical trial. Patients participated in two 5-day inpatient stays during which they consumed a smoothie containing 48g walnuts or a macronutrient-matched placebo smoothie without nuts, with a one-month washout period between the two visits. Results: Walnut consumption improved aspects of the lipid profile, i.e. reduced fasting small and dense LDL particles (p<.02) and increased postprandial large HDL particles (p<.01). Lipoprotein Insulin Resistance Score, glucose and insulin AUC decreased significantly after walnut consumption (p<.01, p<.02, p<.04, respectively). Consuming walnuts significantly increased 10 N-glycans, with 8 of them carrying a fucose core. Lipidomic analysis showed a robust reduction in harmful ceramides, hexosylceramides and sphingomyelins, which have been shown to mediate effects on cardiometabolic risk. Peptide YY AUC significantly increased after walnut consumption (p<.03). No major significant changes in hemodynamic, metabolomic analysis or in host health-promoting bacteria such as Faecalibacterium were found. Conclusions: These data provide a more comprehensive mechanistic perspective of the effect of dietary walnut consumption on cardiometabolic parameters. Lipidomic and lipid nuclear magnetic resonance spectroscopy analysis showed an early but significant reduction in ceramides and other atherogenic lipids with walnut consumption that may explain the longer-term benefits of walnuts on insulin resistance, cardiovascular risk and mortality.

Replacing saturated fat with walnuts or vegetable oils improves central blood pressure and serum lipids in adults at risk for cardiovascular disease: a randomized controlled-feeding trial.

Tindall, A.M., K.S. Petersen, A.C. Skulas-Ray, C.K. Richter, D.N. Proctor, P.M. Kris-Etherton, 2019. Replacing saturated fat with walnuts or vegetable oils improves central blood pressure and serum lipids in adults at risk for cardiovascular disease: a randomized controlled-feeding trial. J Am Heart Assoc. 8(9):e011512. doi: 10.1161/JAHA.118.011512

Background: Walnuts have beneficial effects on cardiovascular risk factors, but it is unclear whether these effects are attributable to the fatty acid ( FA ) content, including α-linolenic acid ( ALA ), and/or bioactives. Methods and Results: A randomized, controlled, 3-period, crossover, feeding trial was conducted in individuals at risk for cardiovascular disease (n=45). Following a 2-week standard Western diet run-in (12% saturated FAs [ SFA ], 7% polyunsaturated FAs, 12% monounsaturated FAs), participants consumed 3 isocaloric weight-maintenance diets for 6 weeks each: a walnut diet ( WD ; 7% SFA , 16% polyunsaturated FAs, 3% ALA , 9% monounsaturated FAs); a walnut FA -matched diet; and an oleic acid-replaced- ALA diet (7% SFA , 14% polyunsaturated FAs, 0.5% ALA , 12% monounsaturated FAs), which substituted the amount of ALA from walnuts in the WD with oleic acid. This design enabled evaluation of the effects of whole walnuts versus constituent components. The primary end point, central systolic blood pressure, was unchanged, and there were no significant changes in arterial stiffness. There was a treatment effect ( P=0.04) for central diastolic blood pressure; there was a greater change following the WD versus the oleic acid-replaced-ALA diet (-1.78±1.0 versus 0.15±0.7 mm Hg, P=0.04). There were no differences between the WD and the walnut fatty acid-matched diet (-0.22±0.8 mm Hg, P=0.20) or the walnut FA-matched and oleic acid-replaced-ALA diets ( P=0.74). The WD significantly lowered brachial and central mean arterial pressure. All diets lowered total cholesterol, LDL (low-density lipoprotein) cholesterol, HDL (high-density lipoprotein) cholesterol, and non- HDL cholesterol. Conclusions: Cardiovascular benefits occurred with all moderate-fat, high-unsaturated-fat diets. As part of a low- SFA diet, the greater improvement in central diastolic blood pressure following the WD versus the oleic acid-replaced-ALA diet indicates benefits of walnuts as a whole-food replacement for SFA.

Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease.

Tindall, A.M., C.J. McLimans, K.S. Petersen, P.M. Kris-Etherton, R. Lamendella, 2019. Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr. 150(4):806-817.

Background: It is unclear whether the favorable effects of walnuts on the gut microbiota are attributable to the fatty acids, including α-linolenic acid (ALA), and/or the bioactive compounds and fiber. Objective: This study examined between-diet gut bacterial differences in individuals at increased cardiovascular risk following diets that replace SFAs with walnuts or vegetable oils.Methods: Forty-two adults at cardiovascular risk were included in a randomized, crossover, controlled-feeding trial that provided a 2-wk standard Western diet (SWD) run-in and three 6-wk isocaloric study diets: a diet containing whole walnuts (WD; 57-99 g/d walnuts; 2.7% ALA), a fatty acid-matched diet devoid of walnuts (walnut fatty acid-matched diet; WFMD; 2.6% ALA), and a diet replacing ALA with oleic acid without walnuts (oleic acid replaces ALA diet; ORAD; 0.4% ALA). Fecal samples were collected following the run-in and study diets to assess gut microbiota with 16S rRNA sequencing and Qiime2 for amplicon sequence variant picking. Results: Subjects had elevated BMI (30 ± 1 kg/m2), blood pressure (121 ± 2/77 ± 1 mmHg), and LDL cholesterol (120 ± 5 mg/dL). Following the WD, Roseburia [relative abundance (RA) = 4.2%, linear discriminant analysis (LDA) = 4], Eubacterium eligensgroup (RA = 1.4%, LDA = 4), LachnospiraceaeUCG001 (RA = 1.2%, LDA = 3.2), Lachnospiraceae UCG004 (RA = 1.0%, LDA = 3), and Leuconostocaceae (RA = 0.03%, LDA = 2.8) were most abundant relative to taxa in the SWD (P ≤ 0.05 for all). The WD was also enriched in Gordonibacter relative to the WFMD. Roseburia (3.6%, LDA = 4) and Eubacterium eligensgroup (RA = 1.5%, LDA = 3.4) were abundant following the WFMD, and Clostridialesvadin BB60group (RA = 0.3%, LDA = 2) and gutmetagenome (RA = 0.2%, LDA = 2) were most abundant following the ORAD relative to the SWD (P ≤ 0.05 for all). Lachnospiraceae were inversely correlated with blood pressure and lipid/lipoprotein measurements following the WD. Conclusions: The results indicate similar enrichment of Roseburia following the WD and WFMD, which could be explained by the fatty acid composition. Gordonibacter enrichment and the inverse association between Lachnospiraceae and cardiovascular risk factors following the WD suggest that the gut microbiota may contribute to the health benefits of walnut consumption in adults at cardiovascular risk. This trial was registered at clinicaltrials.gov as NCT02210767.

Relationship between long‐chain omega‐3 polyunsaturated fatty acid intake and ankle brachial index, pulse wave velocity and resting heart rate in a sample of overweight adults: A secondary analysis of baseline data in the HealthTrack study.

Senevirathne, A., E. Neale, G. Peoples, L. Tapsell, 2019. Relationship between long‐chain omega‐3 polyunsaturated fatty acid intake and ankle brachial index, pulse wave velocity and resting heart rate in a sample of overweight adults: A secondary analysis of baseline data in the HealthTrack study. Nutr Diet. 76(1):95-103.

Aim: The present study aimed to explore the association between dietary long-chain omega-3 polyunsaturated fatty acid (LCn3PUFA) intake and cardiovascular risk indicators (ankle brachial index, resting heart rate and brachial-ankle pulse wave velocity) in a clinical sample of overweight and obese participants volunteering for a weight loss trial. Methods: This was a secondary analysis of baseline data from the HealthTrack study (n = 351). LCn3PUFA intake was calculated via a diet history and the association with ankle brachial index, resting heart rate and brachio-ankle pulse wave velocity was explored using linear regression after controlling for covariates. Results: LCn3PUFA intake was inversely associated with ankle brachial index (R(2) change = 0.021, F change (1, 339) = 8.864, P < 0.05) and resting heart rate (R(2) change = 0.014, F change (1, 342) = 5.337, P < 0.05) but not with brachio-ankle pulse wave velocity (R(2) change = 0.001, F change (1, 339) = 0.725, P > 0.05). Conclusions: In this clinical sample of overweight adults, LCn3PUFA consumption was significantly associated with a lower resting heart rate, adding to the current evidence on the potential benefits of LCn3PUFA consumption. It also supports the value of targeting a diet rich in this nutrient when planning future dietetic approaches. Relationships with ankle brachial index and pulse wave velocity require further investigation. Future research should assess the effect of changes in dietary LCn3PUFA intake on novel cardiovascular risk indicators.