Archive

Consumption of tree nuts as snacks stimulates changes in plasma fatty acid profiles and adipose tissue gene expression in young adults at risk for metabolic syndrome

Widmer, A., K. Lillegard, K. Wood, M. Robles, R. Fan, F. Ye, J.R. Koethe, H.J. Silver, 2025. Consumption of tree nuts as snacks stimulates changes in plasma fatty acid profiles and adipose tissue gene expression in young adults at risk for metabolic syndrome. Clinical Nutrition. (48)25 – 34. https://doi.org/10.1016/j.clnu.2025.03.002.

Background and aims: The prevalence of metabolic syndrome has been increasing in young adults, concomitant with the occurrence of increased abdominal adiposity. We previously reported that consuming tree nuts, as replacement for typical high-carbohydrate snacks, reduces visceral fat and waist circumference in young adults who have one or more metabolic syndrome risk factors. We aimed to investigate the effects of tree nuts snack consumption on plasma and adipose tissue fatty acid profiles along with changes in the expression of adipose tissue genes involved in thermogenesis, glycemia, adipocyte signaling, lipolysis, and immunity. Methods: A randomized parallel-arm 16-week intervention trial was conducted in 84 adults aged 22-36 years. Participants in both groups were provided with caloric goals for weight maintenance, daily menus, and pre-portioned snacks at every other week visits with study registered dietitians. Changes in dietary fatty acid intakes, plasma and abdominal subcutaneous adipose tissue (SAT) triglycerides fatty acid profiles using gas-liquid chromatography, and the expression of 241 genes in abdominal SAT were evaluated. Results: Consuming tree nuts snacks increased mono- and polyunsaturated fatty acid intakes yielding a 9-fold greater dietary unsaturated to saturated fat ratio. The tree nuts snack group also had significantly greater improvements in plasma 16:1/16:0 ratio; plasma phospholipids oleic and gamma linolenic acid content; plasma diglycerides, triglycerides, and cholesterol esters oleic acid content; and total plasma monounsaturated fatty acids. While abdominal SAT only showed trends for increased oleic acid content and unsaturated to saturated fat ratio, the tree nuts snacks participants had altered expression of 13 genes in abdominal SAT that have roles in nutrient sensing, energy homeostasis, and vulnerability to obesity. Conclusions: Replacing typical high-carbohydrate snacks with tree nuts results in more favorable dietary, plasma, and adipose tissue fatty acid profiles that could aid in preventing the development of excess adiposity and cardiometabolic disease states including metabolic syndrome.

Perspective: current scientific evidence and research strategies in the role of almonds in cardiometabolic health.

Trumbo, P.R., J. Ard, F. Bellisle, A. Drewnowski, J.A. Gilbert, R. Kleinman, A. Misra, J. Sievenpiper, M. Tahiri, K.E. Watson, J. Hill, 2024. Perspective: current scientific evidence and research strategies in the role of almonds in cardiometabolic health. Curr Dev Nutr. 9(1):104516. https://doi.org/10.1016/j.cdnut.2024.104516.

 Almonds are consumed by individuals around the world. Because almonds are rich in protein, unsaturated fatty acids, and fiber, a significant amount of research has been conducted on their role in affecting various cardiometabolic endpoints (body weight, blood pressure, blood cholesterol levels, and glycemic response). The most current meta-analyses on almond consumption and various health-related endpoints suggest that almond consumption does not result in weight gain and results in small reductions in LDL cholesterol and diastolic blood pressure, as well as improved glycemic responses in certain populations (i.e. Asian Indians). A number of research gaps on almond consumption and cardiometabolic health were identified that should be addressed to further understand their role in the various cardiometabolic endpoints, including the mechanisms of action interactions with the microbiome with regular consumption and their role as part of a healthy dietary pattern for both individuals and the general population.

Consumption of tree nuts as snacks reduces metabolic syndrome risk in young adults: a randomized trial.

Sumislawski, K., A. Widmer, R.R. Suro, M.E. Robles, K. Lillegard, D. Olson, J.R. Koethe, H.J. Silver, 2023. Consumption of tree nuts as snacks reduces metabolic syndrome risk in young adults: a randomized trial. Nutrients. 15(24):5051. doi: 10.3390/nu15245051.

Metabolic syndrome (MetSx) and its chronic disease consequences are major public health concerns worldwide. Between-meal snacking may be a modifiable risk factor. We hypothesized that consuming tree nuts as snacks, versus typical carbohydrate snacks, would reduce risk for MetSx in young adults. A prospective, randomized, 16-week parallel-group diet intervention trial was conducted in 84 adults aged 22-36 with BMI 24.5 to 34.9 kg/m2 and ≥1 MetSx clinical risk factor. Tree nuts snacks (TNsnack) were matched to carbohydrate snacks (CHOsnack) for energy (kcal), protein, fiber, and sodium content as part of a 7-day eucaloric menu. Difference in change between groups was tested by analysis of covariance using general linear models. Multivariable linear regression modeling assessed main effects of TNsnack treatment and interactions between TNsnack and sex on MetSx score. Age, BMI, and year of study enrollment were included variables. There was a main effect of TNsnack on reducing waist circumference in females (mean difference: -2.20 ± 0.73 cm, p = 0.004) and a trend toward reduced visceral fat (-5.27 ± 13.05 cm2p = 0.06). TNsnack decreased blood insulin levels in males (-1.14 ± 1.41 mIU/L, p = 0.05) and multivariable modeling showed a main effect of TNsnack on insulin. Main effects of TNsnack on triglycerides and TG/HDL ratio were observed (p = 0.04 for both) with TG/HDL ratio reduced ~11%. A main effect of TNsnack (p = 0.04) and an interaction effect between TNsnack and sex (p < 0.001) on total MetSx score yielded 67% reduced MetSx score in TNsnack females and 42% reduced MetSx score in TNsnack males. To our knowledge, this is the first randomized parallel-arm study to investigate cardiometabolic responses to TNsnacks versus typical CHOsnacks among young adults at risk of MetSx. Our study suggests daily tree nut consumption reduces MetSx risk by improving waist circumference, lipid biomarkers, and/or insulin sensitivity-without requiring caloric restriction.

Association of tree nut consumption with cardiovascular disease and cardiometabolic risk factors and health outcomes in US adults: NHANES 2011-2018.

Lopez-Neyman, S. M., N. Zohoori, K.S. Broughton, D.C. Miketinas, 2023. Association of tree nut consumption with cardiovascular disease and cardiometabolic risk factors and health outcomes in US adults: NHANES 2011-2018. Curr. Dev. Nutr. 7(10):102007. https://doi.org/10.1016/j.cdnut.2023.102007

Background: Tree nuts are nutrient dense, and their consumption has been associated with improvements in health outcomes. Objective: To estimate the usual tree nut intake and examine the association between tree nut consumption and cardiometabolic (CM) health outcomes in a nationally representative sample of US adults. Methods: Cross-sectional data were analyzed from a sample of 18,150 adults aged ≥ 20y who provided at least one reliable 24-h dietary recall and had complete data for the variables of interest in the NHANES 2011-2018. Tree nut consumers were defined as those consuming ≥ ¼ ounce/d (7.09 g). The National Cancer Institute Method was used to estimate the usual tree nut intake among consumers. Measurement error calibrated regression models were used to assess the association between tree nut consumption and each health outcome of interest. Results: Approximately 8% of all participants (n = 1238) consumed tree nuts and had a mean ± SE usual intake of 39.5 ± 1.8 g/d. Tree nut consumers were less likely to have obesity (31% vs. 40%, P < 0.001) and low high-density lipoprotein cholesterol (22% vs. 30%, P < 0.001) compared with nonconsumers. Moreover, tree nut consumers had a lower mean waist circumference (WC) (97.1 ± 0.7 vs. 100.5 ± 0.3 cm, P < 0.001) and apolipoprotein B (87.5 ± 1.2 vs. 91.8 ± 0.5 mg/dL, P = 0.004) than nonconsumers. After adjusting models for demographics and lifestyle covariates, the difference in WC between average intake (33.7 g/d) and low threshold intake (7.09/g) of tree nuts was -1.42 ± 0.58 cm (P = 0.005). Conclusions: Most US adults do not consume tree nuts, yet modest consumption was associated with decreased prevalence of cardiovascular disease and CM risk factors and improvement for some health outcome measures.

Premeal almond load decreases postprandial glycaemia, adiposity and reversed prediabetes to normoglycemia: a randomized controlled trial. 

Gulati, S., A. Misra, R. Tiwari, M. Sharma, R.M. Pandey, A.D. Upadhyay, H. Chandra Sati, 2023. Premeal almond load decreases postprandial glycaemia, adiposity and reversed prediabetes to normoglycemia: a randomized controlled trial. Clinical nutrition ESPEN54, 12–22. https://doi.org/10.1016/j.clnesp.2022.12.028

Background: Asian Indians show rapid conversion from prediabetes to type 2 diabetes (T2D). Novel dietary strategies are needed to arrest this progression, by targeting postprandial hyperglycaemia (PPHG). Design: We conducted a free-living randomized controlled open-label parallel arm study to evaluate the effect of a premeal load of almonds (20 g) 30 min before major meals on anthropometric, glycaemic, and metabolic parameters over 3 months. Sixty-six participants with prediabetes in the age range of 18-60 yrs were recruited. The study was registered at clinicaltrials.gov (registration no. NCT04769726). ResultsThirty participants in each arm completed the study. As per ‘intention-to-treat’ analysis, overall additional mean reductions were statistically significant for body weight, BMI, waist circumference (WC), subscapular and suprailiac skinfolds, and improved handgrip strength (Kg) (p < 0·001 for all) in the treatment arm vs. the control arm (after multiple adjustments). In the blood parameters, the additional mean reduction in the treatment arm vs. control arm was statistically significant for fasting and post-75 g oral glucose-load blood glucose, postprandial insulin, HOMA-IR, HbA1c, proinsulin, total cholesterol, and very low-density lipoprotein cholesterol (p < 0·001 for all). Most importantly, we observed a reversal to normoglycemic state (fasting blood glucose and 2 h post-OGTT glucose levels) in 23.3% (7 out of 30) of participants in the treatment arm which is comparable to that seen with Acarbose treatment (25%). ConclusionIncorporation of 20 g of almonds, 30 min before each major meal leads to significant improvement in body weight, WC, glycemia (particularly PPHG), and insulin resistance and shows potential for reversal of prediabetes to normal glucose regulation over 3 months.

Keywords: Almonds; Asian Indians; Postprandial glucose regulators; Postprandial hyperglycaemia; Prediabetes.

A polyphenol-rich green Mediterranean diet enhances epigenetic regulatory potential: the DIRECT PLUS randomized controlled trial. 

Hoffmann, A., A.Y. Meir, T. Hagemann, P. Czechowski, L. Müller, B. Engelmann, S.B. Haange, U. Rolle-Kampczyk, G. Tsaban, H. Zelicha, E. Rinott, A. Kaplan, I. Shelef, M. Stumvoll, M. Blüher, L. Liang, U. Ceglarek, B. Isermann, M. von Bergen, P. Kovacs, M. Keller, I. Shai, 2023. A polyphenol-rich green Mediterranean diet enhances epigenetic regulatory potential: the DIRECT PLUS randomized controlled trial. Metabolism. 145:155594. https://doi.org/10.1016/j.metabol.2023.155594S.

Background: The capacity of a polyphenol-enriched diet to modulate the epigenome in vivo is partly unknown. Given the beneficial metabolic effects of a Mediterranean (MED) diet enriched in polyphenols and reduced in red/processed meat (green-MED), as previously been proven by the 18-month DIRECT PLUS randomized controlled trial, we analyzed the effects of the green-MED diet on methylome and transcriptome levels to highlight molecular mechanisms underlying the observed metabolic improvements. Methods: Our study included 260 participants (baseline BMI = 31.2 kg/m2, age = 5 years) of the DIRECT PLUS trial, initially randomized to one of the intervention arms: A. healthy dietary guidelines (HDG), B. MED (440 mg polyphenols additionally provided by walnuts), C. green-MED (1240 mg polyphenols additionally provided by walnuts, green tea, and Mankai: green duckweed shake). Blood methylome and transcriptome of all study subjects were analyzed at baseline and after completing the 18-month intervention using Illumina EPIC and RNA sequencing technologies. Results: A total of 1573 differentially methylated regions (DMRs; false discovery rate (FDR) < 5 %) were found in the green-MED compared to the MED (177) and HDG (377) diet participants. This corresponded to 1753 differentially expressed genes (DEGs; FDR < 5 %) in the green-MED intervention compared to MED (7) and HDG (738). Consistently, the highest number (6 %) of epigenetic modulating genes was transcriptionally changed in subjects participating in the green-MED intervention. Weighted cluster network analysis relating transcriptional and phenotype changes among participants subjected to the green-MED intervention identified candidate genes associated with serum-folic acid change (all P < 1 × 10-3) and highlighted one module including the KIR3DS1 locus, being negatively associated with the polyphenol changes (e.g. P < 1 × 10-4), but positively associated with the MRI-assessed superficial subcutaneous adipose area-, weight- and waist circumference- 18-month change (all P < 0.05). Among others, this module included the DMR gene Cystathionine Beta-Synthase, playing a major role in homocysteine reduction. Conclusions: The green-MED high polyphenol diet, rich in green tea and Mankai, renders a high capacity to regulate an individual’s epigenome. Our findings suggest epigenetic key drivers such as folate and green diet marker to mediate this capacity and indicate a direct effect of dietary polyphenols on the one‑carbon metabolism.

A polyphenol-rich green Mediterranean diet enhances epigenetic regulatory potential: the DIRECT PLUS randomized controlled trial.

Hoffmann, A., A.Y. Meir, T. Hagemann, P. Czechowski, L. Müller, B. Engelmann, S.B. Haange, U. Rolle-Kampczyk, G. Tsaban, H. Zelicha, E. Rinott, A. Kaplan, I. Shelef, M. Stumvoll, M. Blüher, L. Liang, U. Ceglarek, B. Isermann, M. von Bergen, P. Kovacs, M. Keller, I. Shai, 2023. A polyphenol-rich green Mediterranean diet enhances epigenetic regulatory potential: the DIRECT PLUS randomized controlled trial. Metab.: Clin. Exp. 145, 155594. https://doi.org/10.1016/j.metabol.2023.155594

Background: The capacity of a polyphenol-enriched diet to modulate the epigenome in vivo is partly unknown. Given the beneficial metabolic effects of a Mediterranean (MED) diet enriched in polyphenols and reduced in red/processed meat (green-MED), as previously been proven by the 18-month DIRECT PLUS randomized controlled trial, we analyzed the effects of the green-MED diet on methylome and transcriptome levels to highlight molecular mechanisms underlying the observed metabolic improvements. Methods: Our study included 260 participants (baseline BMI = 31.2 kg/m2, age = 5 years) of the DIRECT PLUS trial, initially randomized to one of the intervention arms: A. healthy dietary guidelines (HDG), B. MED (440 mg polyphenols additionally provided by walnuts), C. green-MED (1240 mg polyphenols additionally provided by walnuts, green tea, and Mankai: green duckweed shake). Blood methylome and transcriptome of all study subjects were analyzed at baseline and after completing the 18-month intervention using Illumina EPIC and RNA sequencing technologies. Results: A total of 1573 differentially methylated regions (DMRs; false discovery rate (FDR) < 5 %) were found in the green-MED compared to the MED (177) and HDG (377) diet participants. This corresponded to 1753 differentially expressed genes (DEGs; FDR < 5 %) in the green-MED intervention compared to MED (7) and HDG (738). Consistently, the highest number (6 %) of epigenetic modulating genes was transcriptionally changed in subjects participating in the green-MED intervention. Weighted cluster network analysis relating transcriptional and phenotype changes among participants subjected to the green-MED intervention identified candidate genes associated with serum-folic acid change (all P < 1 × 10-3) and highlighted one module including the KIR3DS1 locus, being negatively associated with the polyphenol changes (e.g. P < 1 × 10-4), but positively associated with the MRI-assessed superficial subcutaneous adipose area-, weight- and waist circumference- 18-month change (all P < 0.05). Among others, this module included the DMR gene Cystathionine Beta-Synthase, playing a major role in homocysteine reduction. Conclusions: The green-MED high polyphenol diet, rich in green tea and Mankai, renders a high capacity to regulate an individual’s epigenome. Our findings suggest epigenetic key drivers such as folate and green diet marker to mediate this capacity and indicate a direct effect of dietary polyphenols on the one‑carbon metabolism.

Effect of almond consumption on metabolic risk factors-glucose metabolism, hyperinsulinemia, selected markers of inflammation: a randomized controlled trial in adolescents and young adults.

Madan, J., S. Desai, P. Moitra, S. Salis, S. Agashe, R. Battalwar, A. Mehta, R. Kamble, S. Kalita, A.G. Phatak, S.A. Udipi, R.A. Vaidya,  A.B. Vaidya, 2021. Effect of almond consumption on metabolic risk factors-glucose metabolism, hyperinsulinemia, selected markers of inflammation: a randomized controlled trial in adolescents and young adults. Front. Nutr. 8:668622. https://doi.org/10.3389/fnut.2021.668622

A large percentage of the Indian population has diabetes or is at risk of pre-diabetes. Almond consumption has shown benefits on cardiometabolic risk factors in adults. This study explored the effect of almond consumption on determinants of metabolic dysfunction-blood glucose, lipids, insulin and selected inflammatory markers in adolescents and young adults aged 16-25 years from Mumbai city. This randomized controlled trial was conducted for a period of 90 days on individuals with impaired levels of fasting glucose levels between 100-125 mg/dL (5.6-6.9 mmol/L) and 2-h post-glucose value 140-199 mg/dL (7.8-11.0 mmol/L) and/or fasting insulin (≥15 mIU/ml)/stimulated insulin (≥80 mIU/ml). Of 1,313 individuals screened, 421 met the inclusion criteria, of which 275 consented to participate and 219 completed the trial. The trial was registered with Clinical Trials Registry India (CTRI) CTRI/2018/02/011927. The almonds group (n = 107) consumed 56 g almonds daily, the control group (n = 112) was provided an iso-caloric cereal-pulse based snack. At baseline and endline, blood glucose, insulin, HbA1c, LDL-c, HDL-c, total and ox-cholesterol, triglycerides, hs-CRP, IL-6, TNF-α, adiponectin, leptin were measured and HOMA-IR and FG:FI ratios were calculated. Dietary intakes were assessed. The anthropometric measurements, biochemical markers as well as macronutrient intakes did not differ significantly between the two groups at baseline. Almond consumption significantly decreased HbA1c, total cholesterol and LDL-c. Stimulated insulin decreased post-intervention in both groups, but the decrease was greater in the almonds group. Fasting glucose was reduced post intervention in the controls with no change in the almonds group. FG:FI ratio decreased in the almonds group. TNF-α and IL-6 decreased in the almonds group, while it increased in the control group. Our results showed that almonds reduced HbA1c, LDL-c and total cholesterol levels in just 12 weeks of consumption in these adolescents and young adults who were at risk for developing diabetes. Almonds can be considered as part of food-based strategies for preventing pre-diabetes. Clinical Trial Registration: ClinicalTrials.gov, identifier: CTRI/2018/02/011927.

Effects of supplementing the usual diet with a daily dose of walnuts for two years on metabolic syndrome and its components in an elderly cohort.

Al Abdrabalnabi, A., S. Rajaram, E. Bitok, K. Oda, W.L. Beeson, A. Kaur, M. Cofán, M. Serra-Mir, I. Roth, E. Ros, J. Sabaté, 2020. Effects of supplementing the usual diet with a daily dose of walnuts for two years on metabolic syndrome and its components in an elderly cohort. Nutrients. 11;12(2). pii: E451. doi: 10.3390/nu12020451.

Accumulating evidence links nut consumption with an improved risk of metabolic syndrome (MetS); however, long-term trials are lacking. We examined the effects of a daily dose of walnuts for two years on MetS in a large elderly cohort. A total of 698 healthy elderly participants were randomly assigned to either a walnut supplemented or a control diet. The participants in the walnut group were provided with packaged walnuts (1, 1.5, or 2 oz. or ~15% of energy) and asked to incorporate them into their daily habitual diet. The participants in the control group were asked to continue with their habitual diet and abstain from eating walnuts and other tree nuts. Intake of n-3 fatty acid supplements was not permitted in either group. Fasting blood chemistries, blood pressure, and anthropometric measurements were obtained at baseline and at the end of intervention. A total of 625 participants (67% women, mean age 69.1 y) completed this two-year study (90% retention rate). Triglycerides decreased in both walnut (-.94 mg/dl) and control (-0.96 mg/dl) groups, with no significant between-group differences. There was a non-significant decrease in systolic and diastolic blood pressure in the walnut group (-1.30 and -0.71 mm Hg, respectively) and no change in the control group. Fasting blood glucose decreased by ~1 point in both the walnut and control groups. There were no significant between-group differences in the development or reversion of MetS. In conclusion, supplementing the diet of older adults with a daily dose of walnuts had no effect on MetS status or any of its components, although the walnut group tended to have lower blood pressure.

Metabolic syndrome features and excess weight were inversely associated with nut consumption after 1-year follow-up in the PREDIMED-Plus study.

Julibert, A., M. del Mar Bibiloni, L. Gallardo-Alfaro, M. Abbate, M.Á. Martínez-González, J. Salas-Salvadó, D. Corella, M. Fitó, J.A. Martínez, Á.M. Alonso-Gómez, J. Wärnberg, J. Vioque, D. Romaguera, J. Lopez-Miranda, R. Estruch, F.J. Tinahones, J. Lapetra, L. Serra-Majem, N. Cano-Ibañez, V. Martín-Sánchez, X. Pintó, J.J. Gaforio, P. Matía-Martín, J. Vidal, C. Vázquez, L. Daimiel, E. Ros, C. Sayon-Orea, N. Becerra-Tomás, I.M. Gimenez-Alba, O. Castañer, I. Abete, L. Tojal-Sierra, J. Pérez-López, L. Notario-Barandiaran, A. Colom, A. Garcia-Rios, S. Castro-Barquero, R. Bernal, J.M. Santos-Lozano, C.I. Fernández-Lázaro, P. Hernández-Alonso, C. Saiz, M.D. Zomeño, M.A. Zulet, M.C. Belló-Mora, J. Basterra-Gortari, S. Canudas, A. Goday, J.A. Tur, PREDIMED-PLUS investigators, 2020. Metabolic syndrome features and excess weight were inversely associated with nut consumption after 1-year follow-up in the PREDIMED-Plus study. J Nutr. 00:1–10.

Background: High nut consumption has been previously associated with decreased prevalence of metabolic syndrome (MetS) regardless of race and dietary patterns. Objectives: The aim of this study was to assess whether changes in nut consumption over a 1-y follow-up are associated with changes in features of MetS in a middle-aged and older Spanish population at high cardiovascular disease risk. Methods: This prospective 1-y follow-up cohort study, conducted in the framework of the PREvención con DIeta MEDiterránea (PREDIMED)-Plus randomized trial, included 5800 men and women (55-75 y old) with overweight/obesity [BMI (in kg/m2) ≥27 and <40] and MetS. Nut consumption (almonds, pistachios, walnuts, and other nuts) was assessed using data from a validated FFQ. The primary outcome was the change from baseline to 1 y in features of MetS [waist circumference (WC), glycemia, HDL cholesterol, triglyceride (TG), and systolic and diastolic blood pressure] and excess weight (body weight and BMI) according to tertiles of change in nut consumption. Secondary outcomes included changes in dietary and lifestyle characteristics. A generalized linear model was used to compare 1-y changes in features of MetS, weight, dietary intakes, and lifestyle characteristics across tertiles of change in nut consumption. Results: As nut consumption increased, between each tertile there was a significant decrease in WC, TG, systolic blood pressure, weight, and BMI (P < 0.05), and a significant increase in HDL cholesterol (only in women, P = 0.044). The interaction effect between time and group was significant for total energy intake (P < 0.001), adherence to the Mediterranean diet (MedDiet) (P < 0.001), and nut consumption (P < 0.001). Across tertiles of increasing nut consumption there was a significant increase in extra virgin olive oil intake and adherence to the MedDiet; change in energy intake, on the other hand, was inversely related to consumption of nuts. Conclusions: Features of MetS and excess weight were inversely associated with nut consumption after a 1-y follow-up in the PREDIMED-Plus study cohort. This trial was registered at isrctn.com as ISRCTN89898870.