Archive

Acute feeding with almonds compared to a carbohydrate‑based snack improves appetite‑regulating hormones with no effect on self‑reported appetite sensations: a randomised controlled trial.

Carter, S., A.M. Hill, J.D. Buckley, S.‑Y. Tan, G.B. Rogers, A.M. Coates, 2022. Acute feeding with almonds compared to a carbohydrate‑based snack improves appetite‑regulating hormones with no effect on self‑reported appetite sensations: a randomised controlled trial. Eur. J. Nutr. 62:857–866.

Purpose: Early satiety has been identified as one of the mechanisms that may explain the beneficial effects of nuts for reducing obesity. This study compared postprandial changes in appetite-regulating hormones and self-reported appetite ratings after consuming almonds (AL, 15% of energy requirement) or an isocaloric carbohydrate-rich snack bar (SB). Methods This is a sub-analysis of baseline assessments of a larger parallel-arm randomised controlled trial in overweight and obese (Body Mass Index 27.5–34.9 kg/m2) adults (25–65 years). After an overnight fast, 140 participants consumed a randomly allocated snack (AL [n = 68] or SB [n = 72]). Appetite-regulating hormones and self-reported appetite sensations, measured using visual analogue scales, were assessed immediately before snack food consumption, and at 30, 60, 90 and 120 min following snack consumption. A sub-set of participants (AL, n = 49; SB, n = 48) then consumed a meal challenge buffet ad libitum to assess subsequent energy intake. An additional appetite rating assessment was administered post buffet at 150 min. Results: Postprandial C-peptide area under the curve (AUC) response was 47% smaller with AL compared to SB (p < 0.001). Glucose-dependent insulinotropic polypeptide, glucagon and pancreatic polypeptide AUC responses were larger with AL compared to SB (18%, p = 0.005; 39% p < 0.001; 45% p < 0.001 respectively). Cholecystokinin, ghrelin, glucagon-like peptide-1, leptin and polypeptide YY AUCs were not different between groups. Self-reported appetite ratings and energy intake following the buffet did not differ between groups. Conclusion: More favourable appetite-regulating hormone responses to AL did not translate into better self-reported appetite or reduced short-term energy consumption. Future studies should investigate implications for longer term appetite regulation.

Nut consumption in association with overall mortality and recurrence/disease-specific mortality among long-term breast cancer survivors.

Cong, W., K. Gu, F. Wang, H. Cai, W. Zheng, P. Bao, X.-O. Shu, 2022. Nut consumption in association with overall mortality and recurrence/disease-specific mortality among long-term breast cancer survivors. International Journal of Cancer.doi.org/10.1002/ijc.33824.

High nut consumption is associated with reduced total and certain cause-specific mortality in general populations. However, its association with cancer outcomes among long-term breast cancer survivors remains unknown. We examined the associations of nut consumption (including peanuts and tree nuts), assessed at 5-year postdiagnosis, with overall survival (OS) and disease-free survival (DFS) among 3449 long-term breast cancer survivors from the Shanghai Breast Cancer Survival Study, applying Cox regression analysis. During a median follow-up of 8.27 years post dietary assessment, there were 374 deaths, including 252 breast cancer deaths. Among 3274 survivors without previous recurrence at the dietary assessment, 209 developed breast cancer-specific events, that is, recurrence, metastasis or breast cancer mortality. At 5-year post dietary assessment (ie, 10-year postdiagnosis), regular nut consumers had higher OS (93.7% vs 89.0%) and DFS (94.1% vs 86.2%) rates. After multivariable adjustment, nut consumption was positively associated with OS (Ptrend = .022) and DFS (Ptrend = .003) following a dose-response pattern, with hazard ratios (95% confidence interval) of 0.72 (0.52-1.05) for OS and 0.48 (0.31-0.73) for DFS, for participants with greater than median nut intake compared with nonconsumers. The associations did not vary by nut type. Stratified analyses showed that the associations were more evident among participants with a higher total energy intake for OS (Pinteraction = .02) and among participants with early stage (I-II) breast cancers for DFS (Pinteraction = .04). The nut-DFS associations were not modified by estrogen receptor/progesterone receptor status or other known prognostic factors. In conclusion, nut consumption was associated with better survival, particularly DFS, among long-term breast cancer survivors.

The effects of peanuts and tree nuts on lipid profile in type 2 diabetic patients: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies.

Xia, J.Y., J.H. Yu, D.F. Xu, C. Yang, H. Xia, G.J. Sun, 2021. The effects of peanuts and tree nuts on lipid profile in Type 2 diabetic patients: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies. Front. Nutr. https://doi.org/10.3389/fnut.2021.765571

Background: Type 2 diabetes mellitus was found to be associated with metabolic disorders, particularly abnormal glucose and lipid metabolism. Dietary food choices may have profound effects on blood lipids. The primary objective of this study was to examine the effects of peanuts and tree nuts intake on lipid profile in patients with type 2 diabetes. Methods: According to preferred reporting items for systematic reviews and meta-analysis guidelines, we performed a systematic search of randomized controlled clinical trials and systematic reviews published in PubMed, Web of Science, Embase, Scopus, and Cochrane library, from inception through June 2021. Studies in populations with type 2 diabetes, which compare nuts or peanuts to a controlled-diet group were included. We used the mean difference with 95% CIs to present estimates for continuous outcomes from individual studies. In addition, we used the GRADEpro tool to evaluate the overall quality of evidence. Results: Sixteen studies involving 1,041 participants were eligible for this review. The results showed that peanuts and tree nuts supplementation did not induce significant changes in low-density lipoprotein-cholesterol (LDL-C) (mean difference = −0.11; 95%CI: −0.25 – 0.03, p = 0.117) and high-density lipoprotein-cholesterol (HDL-C) (mean difference = 0.01; 95%CI: −0.01 – 0.04, p = 0.400) in patients with type 2 diabetics. In addition, we found that peanuts and tree nuts intake may cause a significantly reduction in total cholesterol (TC) (mean difference = −0.14; 95%CI: −0.26 – −0.02, p = 0.024) and triglyceride (TG) (mean difference = −0.10; 95%CI: −0.17 – −0.02, p = 0.010). In the subgroup analysis, a significantly greater reduction in TC was observed in studies which duration was <12 weeks (mean difference = −0.22; 95%CI: −0.37 – −0.08, p = 0.002). The quality of the body of evidence was “moderate” for TC and TG, the quality of evidence for LDL-C and HDL-C were “low.” Conclusion: Our findings suggest that consuming peanuts and tree nuts might be beneficial to lower TC concentration and TG concentration in type 2 diabetics subjects. Furthermore, peanuts and tree nuts supplementation could be considered as a part of a healthy lifestyle in the management of blood lipids in patients with type 2 diabetes. Given some limits observed in the current studies, more well-designed trials are still needed.

The effects of almond consumption on inflammatory biomarkers in adults: A systematic review and meta-analysis of randomized clinical trials.

Fatahi, S., E. Daneshzad. K. Lotfi, L. Azadbakht, 2021. The effects of almond consumption on inflammatory biomarkers in adults: A systematic review and meta-analysis of randomized clinical trials. Adv. Nutr. doi:10.1093/advances/nmab158.

Conflicting findings have been reported regarding the effects of almond consumption on inflammatory markers. This study aimed to summarize the current literature to determine whether almond can affect inflammatory markers. A systematic search was carried out in PubMed, Scopus, and ISI Web of Science up to March 2021. Randomized clinical trials (RCTs) that compared almond with no almond consumption were included. The outcomes of interest were changes in circulating C-reactive protein (CRP), Interleukin-6 (IL-6), Tumor Necrosis Factor Alpha (TNF-α), Intercellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) concentrations. The random-effects model was used to find the mean differences. Totally, 18 trials with 847 participants were eligible for the current analysis. Participant age ranged from 26.3 to 69.6 y. Combining 16 studies, almond consumption significantly reduced serum levels of CRP (WMD: -0.25 mg/L; 95% CI: -0.43, -0.06; I2 = 0.0% P-heterogeneity = 0.633). However, the beneficial effect of almond intake only occurred at doses <60 g/d. Pooling 11 effect sizes, almond interventions significantly decreased circulating IL-6 concentrations (WMD: -0.11 pg/mL; 95% CI: -0.21, -0.01; I2 = 19.9% P-heterogeneity = 0.254). In subgroup analyses, effects on CRP and IL-6 were not significant in unhealthy participants or those with obesity. In addition, almond consumption had no significant effect on TNF-α (WMD: -0.05 pg/mL; 95% CI: -0.11, 0.01; I2 = 0.0% P-heterogeneity = 0.893; n = 6), ICAM-1 (WMD: 6.39 ng/mL; 95% CI: -9.44, 22.22; I2 = 66.6% P-heterogeneity = 0.006; n = 7) or VCAM-1 (WMD: -8.31 ng/mL; 95% CI: -35.32, 18.71; I2 = 58.8% P-heterogeneity = 0.033; n = 6). In conclusion, almond consumption beneficially affects CRP and IL-6 concentrations in adults. However, it has no beneficial effect on TNF-α, ICAM-1, or VCAM-1. More trials are needed to determine the effects of almond on inflammation.