Archive

Polyphenols in almond skins produced during almond blanching process modulate plasma biomarkers of oxidative stress in healthy humans.

Chen, C.-Y.O., P.E. Milbury, J.B. Blumberg, 2019. Polyphenols in almond skins produced during almond blanching process modulate plasma biomarkers of oxidative stress in healthy humans. Antioxidants. 8, 95. doi: https://www.mdpi.com/2076-3921/8/4/95/pdf

Almond skins are a waste byproduct of blanched almond production. Polyphenols extracted from almond skins possess antioxidant activities in vitro and in vivo. Thus, we examined the pharmacokinetic profile of almond skin polyphenols (ASP) and their effect on measures of oxidative stress. In a randomized crossover trial, seven adults consumed two acute ASP doses (225 mg (low, L) or 450 mg (high, H) total phenols) in skim milk or milk alone. Plasma flavonoids, glutathione peroxidase (GPx), glutathione (GSH), oxidized GSH (GSSG), and resistance of low-density lipoprotein (LDL) to oxidation were measured over 10 h. The H dose increased catechin and naringenin in plasma, with maximum concentrations of 44.3 and 19.3 ng/mL, respectively. The GSH/GSSG ratio at 3 h after the H doses was 212% of the baseline value, as compared to 82% after milk (p = 0.003). Both ASP doses upregulated GPx activity by 26–35% from the baseline at 15, 30, 45, and 120 min after consumption. The in vitro addition of α-tocopherol extended the lag time of LDL oxidation at 3 h after L and H consumption by 144.7% and 165.2% of that at 0 h compared to no change after milk (p≤0.05). In conclusion, ASP are bioavailable and modulate GSH status, GPx activity, and the resistance of LDL to oxidation.

The effect of almond consumption on postprandial metabolic and satiety response in high-risk pregnant women.

Lesser, M.N.R., K. Mauldin, L. Sawrey-Kubicek, V. Gildengorin, J.C. King, 2019. The effect of almond consumption on postprandial metabolic and satiety response in high-risk pregnant women. Nutrients. 11, 490; doi:10.3390/nu11030490.

Almonds provide a satiating, healthy source of fat and fiber. The postprandial metabolic and satiety response to 2 ounces of nuts or dairy was assessed in 18 overweight/obese women during late pregnancy. Serum glucose, triglycerides, insulin, c-peptide, leptin, ghrelin, and lipoprotein particles were measured prior to and during a 5-h postprandial period following the consumption of an isocaloric breakfast meal with equivalent amounts of fat from either nuts or dairy on two separate mornings. Satiety was assessed by visual analogue scale (VAS) questionnaires and ad libitum food intake at the end of the study. At 33 weeks gestation, the women had gained an average of 7.0±4.4 kg during gestation. Body fat averaged 41.9±5.5% and hemoglobin A1c levels were elevated, (7.2±0.6%). Fasting glucose levels were normal, but hyperinsulinemia was evident. The two test meals did not affect the postprandial metabolic response, but glucose, triglyceride, and ghrelin concentrations changed with time during the postprandial period (p < 0.001, p = 0.0008, p = 0.006). Satiety measures did not differ between the two test meals. Consuming an isocaloric breakfast meal with equivalent amounts of fat from nuts or dairy did not alter postprandial levels of blood lipids, glucose, hormones, or measures of satiety in overweight/obese, pregnant women.

A randomized, controlled trial on the effects of almonds on lipoprotein response to a higher carbohydrate, lower fat diet in men and women with abdominal adiposity.

Williams, P.T., N. Bergeron, S. Chiu, R.M. Krauss, 2019. A randomized, controlled trial on the effects of almonds on lipoprotein response to a higher carbohydrate, lower fat diet in men and women with abdominal adiposity. Lipids in Health and Disease. 18: 83. doi: https://lipidworld.biomedcentral.com/track/pdf/10.1186/s12944-019-1025-4.

Background: Almonds have been shown to lower LDL cholesterol but there is limited information regarding their effects on the dyslipidemia characterized by increased levels of very low-density lipoproteins (VLDL) and small, dense low-density lipoprotein (LDL) particles that is associated with abdominal adiposity and high carbohydrate intake. The objective of the present study was to test whether substitution of almonds for other foods attenuates carbohydrate-induced increases in small, dense LDL in individuals with increased abdominal adiposity. Methods: This was a randomized cross-over study of three 3wk diets, separated by 2wk washouts: a higher carbohydrate (CHO) reference diet (CHOhigh), a higher-CHO diet with isocaloric substitution of 20% kcal (E) from almonds (CHOhigh + almonds), and a lower-CHO reference diet (CHOlow) in 9 men and 15 women who were overweight or obese. The two CHOhigh diets contained 50% carbohydrate, 15% protein, 35% fat (6% saturated, 21% monounsaturated, 8% polyunsaturated), while the CHOlow diet contained 25% carbohydrate, 28% protein, 47% fat (8% saturated, 28% monounsaturated, 8% polyunsaturated). Lipoprotein subfraction concentrations were measured by ion mobility. Results: Relative to the CHOlow diet: 1) the CHOhigh +almonds diet significantly increased small, dense LDLIIIa (mean difference ± SE: 28.6±10.4nmol/L, P=0.008), and reduced LDL-peak diameter (−1.7±0.6Å, P=0.008); 2) the CHOhigh diet significantly increased medium-sized LDLIIb (24.8±11.4nmol/L, P=0.04) and large VLDL (3.7±1.8 nmol/L, P=0.05). Relative to CHOlow, the effects of CHOhigh on LDLIIIa (17.7±10.6nmol/L) and LDL-peak diameter (−1.1±0.6Å) were consistent with those of CHOhigh + almonds, and the effects of CHOhigh +almonds on LDLIIb (21.0± 11.2nmol/L) and large VLDL (2.8±1.8nmol/L) were consistent with those of CHOhigh, but did not achieve statistical significance (P>0.05). None of the variables examined showed a significant difference between the CHOhigh + almonds and CHOhigh diets (P>0.05). Conclusion: Our analyses provided no evidence that deriving 20% E from almonds significantly modifies increases in levels of small, dense LDL or other plasma lipoprotein changes induced by a higher carbohydrate low saturated fat diet in individuals with increased abdominal adiposity.

Effects of almond consumption on metabolic and liver function in overweight and obese adults with elevated fasting blood glucose: A randomized controlled trial.

Bowen, J., N.D. Luscombe-Marsh, W. Stonehouse, C. Tran, G.B. Rogers, N. Johnson, C.H. Thompson, G.D. Brinkworth, 2019. Effects of almond consumption on metabolic and liver function in overweight and obese adults with elevated fasting blood glucose: A randomized controlled trial. Clin. Nutr. ESPEN 30:10-18.

Background: Almonds are a rich source of bioactive components. This study examined the effects of daily almond consumption on glycaemic regulation, liver fat concentration and function, adiposity, systemic inflammation and cardiometabolic health. Methods: 76 adults with elevated risk of type 2 diabetes (T2D) or T2D (age: 60.7 ± 7.7 years, body mass index: 33.8 ± 5.6 kg/m2) were randomly assigned to daily consumption of either 2 servings of almonds (AS:56 g/day) or an isocaloric, higher carbohydrate biscuit snack (BS) for 8 weeks. Glycosylated haemoglobin (HbA1c), glycaemic variability (GV), liver fat, serum aminotransferases, body weight and composition, markers of cardio-metabolic risk and systemic inflammation were assessed at baseline and week 8. Results: No group differential effects were observed on HbA1c, GV, body weight and composition, liver fat and aminotransferases, cardio-metabolic health and inflammatory markers (all P > 0.05). For serum TC/HDL-C ratio a significant gender × treatment × time interaction occurred (P < 0.01), such that in women TC/HDL-C ratio was significantly reduced after AS compared to BS (-0.36 [0.26] mmol/L [n = 14] vs. -0.14 [0.32] mmol/L [n = 17]; P = 0.05), but not in men (P = 0.52). Conclusions: Compared to BS, AS consumed between meals did not substantially alter glycaemic regulation, liver fat or function, adiposity, and metabolic health and inflammatory markers. Serum TC/HDL-C ratio improved in women, but not in men with AS; but as this sub-analysis was not defined a priori the results should be interpreted with caution. Further research should examine the longer-term health effects of regular almond consumption and differential gender responses.

Lipid lowering effect of almonds (Prunus Dulcis) in healthy adults.

Tahir, F.N., M. Danyal, S.I.A. Shah, J.A. Qureshi, 2019. Lipid lowering effect of almonds (Prunus Dulcis) in healthy adults. Pakistan Journal of Medical and Health Sciences. 12(4):1356-1358.

Background: Almonds (Prunus dulcis) are low in saturated fats and cholesterol and high in unsaturated fatty acids. Almonds also contain high concentrations of other nutrients like vitamin E, plant sterols, phytochemicals and dietary fibers. Almonds are associated with a reduced risk of cardiovascular disorders (CVD) by having a potentially beneficial impact of on serum lipids due to their nutrient composition. Aim: To investigate the effect of regular almond consumption on the serum lipid profile of normolipidemic adults. Methods: In this non-randomized prospective study, 19 normolipidemic adults (10 males, 9 females) with an age range from 21 to 60 years consumed 50 grams of raw almonds for 30 days. Fasting blood samples were collected from each participant at baseline and on the 31st day for lipid profile analysis. Results: Marked decreases in serum total cholesterol level (p-value= 0.000) and serum low-density lipoprotein (LDL) level (p-value= 0.047) were observed from baseline values following almond treatment for a month. An increase in high density lipoprotein (HDL) level was also seen but it was not statistically significant (p-value=0.081). Conclusion: Regular intake of almonds can help maintain a normal lipid profile in healthy adults and reduce the risk of CVD. Almond consumption should be encouraged in the local healthy population for improved metabolic and cardiovascular health outcomes.

The association between metabolic syndrome and peanuts, pine nuts, almonds consumption: The Ansan and Ansung Study.

Jung, J.Y., S.K. Park, C.-M. Oh, J.-M. Choi, J.-H. Ryoo, J. Kim, M.K. Kim, 2019. The association between metabolic syndrome and peanuts, pine nuts, almonds consumption: The Ansan and Ansung Study. Endocrine. 65(2):270-277.

Background: Previous studies reported an inverted relationship between nut consumption and the incidence of metabolic syndrome (MetS). The present study investigated the incidental risk for MetS according to peanut, almond, and fine nut consumption in the Korean population. Methods: In a community-based Korean cohort, 5306 Korean adults were divided into four groups according to their peanut, almond, and pine nut intake (<1/month, 1/month-0.5/week, 0.5-1/week, and ≥1/week, in which one serving = 15 g) and were followed-up for 10 years. A Cox proportional hazard model was used to evaluate the hazard ratios (HRs) with confidence intervals (CI) for MetS in each study group. Age subgroup (≥50 or <50 years) analysis was also conducted. Results: The age and multivariable-adjusted HRs with 95% CIs for MetS showed a significant inverse dose-response relationship between peanut, almond, and pine nut intake and the incidence of MetS in men and women (multivariable-adjusted HRs [95% CI] in men; 0.91 [0.76-1.09] in 1/month-0.5/week, 1.03 [0.80-1.31] in 0.5-1/week, 0.72 [0.56-0.93] in ≥1/week and in women; 0.81 [0.65-1.003] in 1/month-0.5/week, 0.76 [0.54-1.07] in 0.5-1/week, 0.57 [0.41-0.79] ≥1/week)). Subgroup analysis showed a significant difference in middle-aged men (≥1/week) and old-aged women (≥0.5/week). Conclusion: The results of the present study suggested that peanut, almond, and pine nut intake (≥15 g/week) may be inversely related to incidence risk of MetS in the Korean general population. Additionally, the association between nut consumption and MetS incidence risk may differ in sex and age subgroups.

Nut consumption in relation to cardiovascular disease incidence and mortality among patients with diabetes mellitus.

Liu, G., M. Guasch-Ferre, Y. Hu, Y. Li, F.B. Hu, E.B. Rimm, J.E. Manson, K. Rexrode, Q. Sun, 2019. Nut consumption in relation to cardiovascular disease incidence and mortality among patients with diabetes mellitus. Circulation Research. doi.org/10.1161/CIRCRESAHA.118.314316

Rationale: The evidence regarding the potential health benefits of nut consumption among individuals with type 2 diabetes is limited. Objective: To examine intake of total and specific types of nuts, including tree nuts and peanuts, in relation to subsequent risk of cardiovascular disease (CVD), including coronary heart disease (CHD) and stroke, and all-cause and cause-specific mortality among individuals with diabetes. Methods and Results: This prospective analysis included 16,217 men and women with diabetes at baseline or diagnosed during follow-up (Nurses’ Health Study: 1980-2014, Health Professionals Follow-Up Study: 1986-2014). Nut consumption was assessed using a validated food frequency questionnaire and updated every 2-4 years. During 223,682 and 254,923 person-years of follow-up, there were 3,336 incident CVD cases and 5,682 deaths. Higher total nut consumption was associated with a lower risk of CVD incidence and mortality. The multivariate-adjusted hazard ratios (95% confidence intervals) for participants who consumed 5 or more servings of total nuts per week (1 serving=28g), compared with those who consumed less than 1 serving per month, were 0.83 (0.71-0.98; P trend=0.01) for total CVD incidence, 0.80 (0.67-0.96; P trend=0.005) for CHD incidence, 0.66 (0.52-0.84; P trend<0.001) for CVD mortality, and 0.69 (0.61-0.77; P trend<0.001) for all-cause mortality. Total nut consumption was not significantly associated with risk of stroke incidence or cancer mortality. For specific types of nuts, higher tree nut consumption was associated with lower risk of total CVD, CHD incidence, and mortality due to CVD, cancer, and all causes, while peanut consumption was associated with lower all-cause mortality only (all P trend<0.001). In addition, compared with participants who did not change the consumption of total nuts from pre- to post-diabetes diagnosis, participants who increased consumption of total nuts after diabetes diagnosis had an 11% lower risk of CVD, a 15% lower CHD risk, a 25% lower CVD mortality, and a 27% lower all-cause mortality. The associations persisted in subgroup analyses stratified by sex/cohort, body mass index at diabetes diagnosis, smoking status, diabetes duration, nut consumption before diabetes diagnosis, or diet quality. Conclusions: Higher consumption of nuts, especially tree nuts, is associated with lower CVD incidence and mortality among participants with diabetes. These data provide novel evidence that supports the recommendation of incorporating nuts into healthy dietary patterns for the prevention of CVD complications and premature deaths among individuals with diabetes.

Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): A pragmatic multicentre randomised trial.

Al Wattar, B.H., J. Dodds, A. Placzek, L. Beresford, E. Spyreli, A. Moore, A. Moore, F.J. Gonzalez Carreras, F. Austin, N. Murugesu, T.J. Roseboom, M. Bes-Rastrollo, G.A. Hitman, R. Hooper, K.S. Khan, S. Thangaratinam, for the ESTEEM study group, 2019. Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): A pragmatic multicentre randomised trial. PLoS Med 16(7): e1002857. https://doi.org/10.1371/journal. pmed.1002857

Background: Pregnant women with metabolic risk factors are at high risk of complications. We aimed to assess whether a Mediterranean-style diet reduces adverse pregnancy outcomes in highrisk women. Methods and findings: We conducted a multicentre randomised trial in 5 maternity units (4 in London and 1 in Birmingham) between 12 September 2014 and 29 February 2016. We randomised inner-city pregnant women with metabolic risk factors (obesity, chronic hypertension, or hypertriglyceridaemia) to a Mediterranean-style diet with high intake of nuts, extra virgin olive oil, fruits, vegetables, nonrefined grains, and legumes; moderate to high consumption of fish; low to moderate intake of poultry and dairy products; low intake of red and processed meat; and avoidance of sugary drinks, fast food, and food rich in animal fat versus usual care. Participants received individualised dietary advice at 18, 20, and 28 weeks’ gestation. The primary endpoints were composite maternal (gestational diabetes or preeclampsia) and composite offspring (stillbirth, small for gestational age, or admission to neonatal care unit) outcomes prioritised by a Delphi survey. We used an intention-to-treat (ITT) analysis with multivariable models and identified the stratification variables and prognostic factors a priori. We screened 7,950 and randomised 1,252 women. Baseline data were available for 593 women in the intervention (93.3% follow-up, 553/593) and 612 in the control (95.6% follow-up, 585/612) groups. Over a quarter of randomised women were primigravida (330/1,205; 27%), 60% (729/1,205) were of Black or Asian ethnicity, and 69% (836/1,205) were obese. Women in the intervention arm consumed more nuts (70.1% versus 22.9%; adjusted odds ratio [aOR] 6.8, 95% confidence interval [CI] 4.3–10.6, p ≤ 0.001) and extra virgin olive oil (93.2% versus 49.0%; aOR 32.2, 95% CI 16.0–64.6, p ≤ 0.001) than controls; increased their intake of fish (p < 0.001), white meat (p < 0.001), and pulses (p = 0.05); and reduced their intake of red meat (p < 0.001), butter, margarine, and cream (p < 0.001). There was no significant reduction in the composite maternal (22.8% versus 28.6%; aOR 0.76, 95% CI 0.56–1.03, p = 0.08) or composite offspring (17.3% versus 20.9%; aOR 0.79, 95% CI 0.58– 1.08, p = 0.14) outcomes. There was an apparent reduction in the odds of gestational diabetes by 35% (aOR 0.65, 95% CI 0.47–0.91, p = 0.01) but not in other individual components of the composite outcomes. Mothers gained less gestational weight (mean 6.8 versus 8.3 kg; adjusted difference −1.2 Kg, 95% CI −2.2 to −0.2, p = 0.03) with intervention versus control. There was no difference in any of the other maternal and offspring complications between both groups. When we pooled findings from the Effect of Simple, Targeted Diet in Pregnant Women With Metabolic Risk Factors on Pregnancy Outcomes (ESTEEM) trial with similar trials using random effects meta-analysis, we observed a significant reduction in gestational diabetes (odds ratio [OR] 0.67, 95% CI 0.53–0.84, I2 = 0%), with no heterogeneity (2 trials, 2,397 women). The study’s limitations include the use of participant reported tools for adherence to the intervention instead of objective biomarkers. Conclusions: A simple, individualised, Mediterranean-style diet in pregnancy did not reduce the overall risk of adverse maternal and offspring complications but has the potential to reduce gestational weight gain and the risk of gestational diabetes.

The effect of nuts on markers of glycemic control: a systematic review and meta-analysis of randomized controlled trials.

Tindall, A.M., E.A. Johnston, P.M. Kris-Etherton, K.S. Petersen, 2019. The effect of nuts on markers of glycemic control: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 109:297–314.

Background: Observational evidence suggests higher nut consumption is associated with better glycemic control; however, it is unclear if this association is causal. Objectives: We aimed to conduct a systematic review and meta-analysis of randomized controlled trials to examine the effect of tree nuts and peanuts on markers of glycemic control in adults. Methods: A systematic review and meta-analysis of randomized controlled trials was conducted. A total of 1063 potentially eligible articles were screened in duplicate. From these articles, 40 were eligible for inclusion and data from these articles were extracted in duplicate. The weighted mean difference (WMD) between the nut intervention and control arms was determined for fasting glucose, fasting insulin, glycated hemoglobin (HbA1c), and homeostasis model assessment of insulin resistance (HOMA-IR) using the DerSimonian and Laird random-effects method. For outcomes where a limited number of studies were published, a qualitative synthesis was presented. Results: A total of 40 randomized controlled trials including 2832 unique participants, with a median duration of 3 mo (range: 1–12 mo), were included. Overall consumption of tree nuts or peanuts had a favorable effect on HOMA-IR (WMD: −0.23; 95% CI: −0.40, −0.06; I2=51.7%) and fasting insulin (WMD: −0.40μIU/mL;95% CI: −0.73, −0.07μ IU/mL; I2 = 49.4%). There was no significant effect of nut consumption on fasting blood glucose (WMD: −0.52 mg/dL;95% CI: −1.43,0.38mg/dL; I2 =53.4%) o rHbA1c (WMD: 0.02%; 95% CI: −0.01%, 0.04%; I2 =51.0%). Conclusions: Consumption of peanuts or tree nuts significantly decreased HOMA-IR and fasting insulin; there was no effect of nut consumption on HbA1c or fasting glucose. The results suggest that nut consumption may improve insulin sensitivity. In the future, well-designed clinical trials are required to elucidate the mechanisms that account for these observed effects.

Nut and peanut butter consumption and the risk of lung cancer and its subtypes: A prospective cohort study.

Nieuwenhuis, I., P.A. van den Brandt, 2019. Nut and peanut butter consumption and the risk of lung cancer and its subtypes: A prospective cohort study. Lung Cancer. 128:57-66.
Objectives: Nut consumption has been associated with reduced cancer-related mortality, but evidence for a relation between nut intake and lung cancer risk is limited. We investigated the association between total nut, tree nut, peanut, and peanut butter intake and the risk of lung cancer and its subtypes in the Netherlands Cohort Study. Materials and Methods: In 1986, dietary and lifestyle habits of 120,852 participants, aged 55–69 years, were measured with a questionnaire. After 20.3 years of follow-up, 3720 subcohort members and 2861 lung cancer cases were included in multivariable case-cohort analyses. Results: Total nut intake was not significantly associated with total lung cancer risk in men or women. For small cell carcinoma, a significant inverse association with total nut intake was observed in men after controlling for detailed smoking habits (HR (95%CI) for 10+ g/day vs. non-consumers: 0.62 (0.43-0.89), p-trend: 0.024). Inverse relations with small cell carcinoma were also found for tree nut and peanut intake in men in continuous analyses (HR (95%CI) per 5g/day increment: 0.70 (0.53-0.93) and 0.93 (0.88-0.98), respectively). For the other lung cancer subtypes, no significant associations were seen in men. Nut intake was not related to the risk of lung cancer subtypes in women, and no associations were found for peanut butter in both sexes. Conclusion: Increased nut intake might contribute to the prevention of small cell carcinoma in men. No significant associations were found in men for the other subtypes or total lung cancer, in women, or for peanut butter intake.